ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

11x^{2}-9x+1=0
เมื่อต้องการแก้อสมการ ให้แยกตัวประกอบด้านซ้ายมือ สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 11\times 1}}{2\times 11}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 11 สำหรับ a -9 สำหรับ b และ 1 สำหรับ c ในสูตรกำลังสอง
x=\frac{9±\sqrt{37}}{22}
ทำการคำนวณ
x=\frac{\sqrt{37}+9}{22} x=\frac{9-\sqrt{37}}{22}
แก้สมการ x=\frac{9±\sqrt{37}}{22} เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
11\left(x-\frac{\sqrt{37}+9}{22}\right)\left(x-\frac{9-\sqrt{37}}{22}\right)>0
เขียนอสมการใหม่โดยใช้ผลเฉลยที่ได้
x-\frac{\sqrt{37}+9}{22}<0 x-\frac{9-\sqrt{37}}{22}<0
เพื่อให้ผลคูณเป็นค่าบวก x-\frac{\sqrt{37}+9}{22} และ x-\frac{9-\sqrt{37}}{22} ต้องเป็นค่าลบทั้งคู่ หรือค่าบวกทั้งคู่ พิจารณากรณีเมื่อ x-\frac{\sqrt{37}+9}{22} และ x-\frac{9-\sqrt{37}}{22} เป็นค่าลบทั้งคู่
x<\frac{9-\sqrt{37}}{22}
ผลเฉลยที่แก้ไขอสมการทั้งสองคือ x<\frac{9-\sqrt{37}}{22}
x-\frac{9-\sqrt{37}}{22}>0 x-\frac{\sqrt{37}+9}{22}>0
พิจารณากรณีเมื่อ x-\frac{\sqrt{37}+9}{22} และ x-\frac{9-\sqrt{37}}{22} เป็นค่าบวกทั้งคู่
x>\frac{\sqrt{37}+9}{22}
ผลเฉลยที่แก้ไขอสมการทั้งสองคือ x>\frac{\sqrt{37}+9}{22}
x<\frac{9-\sqrt{37}}{22}\text{; }x>\frac{\sqrt{37}+9}{22}
ผลเฉลยสุดท้ายคือการรวมผลเฉลยที่ได้