หาค่า x
x=\frac{1}{2}=0.5
x=\frac{2}{3}\approx 0.666666667
กราฟ
แบบทดสอบ
Quadratic Equation
ปัญหา 5 ข้อที่คล้ายคลึงกับ:
1 { x }^{ 2 } - \frac{ 7 }{ 6 } x+ \frac{ 1 }{ 3 } =0
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x^{2}-\frac{7}{6}x+\frac{1}{3}=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\left(-\frac{7}{6}\right)^{2}-4\times \frac{1}{3}}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -\frac{7}{6} แทน b และ \frac{1}{3} แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{49}{36}-4\times \frac{1}{3}}}{2}
ยกกำลังสอง -\frac{7}{6} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{49}{36}-\frac{4}{3}}}{2}
คูณ -4 ด้วย \frac{1}{3}
x=\frac{-\left(-\frac{7}{6}\right)±\sqrt{\frac{1}{36}}}{2}
เพิ่ม \frac{49}{36} ไปยัง -\frac{4}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{-\left(-\frac{7}{6}\right)±\frac{1}{6}}{2}
หารากที่สองของ \frac{1}{36}
x=\frac{\frac{7}{6}±\frac{1}{6}}{2}
ตรงข้ามกับ -\frac{7}{6} คือ \frac{7}{6}
x=\frac{\frac{4}{3}}{2}
ตอนนี้ แก้สมการ x=\frac{\frac{7}{6}±\frac{1}{6}}{2} เมื่อ ± เป็นบวก เพิ่ม \frac{7}{6} ไปยัง \frac{1}{6} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{2}{3}
หาร \frac{4}{3} ด้วย 2
x=\frac{1}{2}
ตอนนี้ แก้สมการ x=\frac{\frac{7}{6}±\frac{1}{6}}{2} เมื่อ ± เป็นลบ ลบ \frac{1}{6} จาก \frac{7}{6} โดยการค้นหาตัวหารร่วมและลบเศษออก แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{2}{3} x=\frac{1}{2}
สมการได้รับการแก้ไขแล้ว
x^{2}-\frac{7}{6}x+\frac{1}{3}=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}-\frac{7}{6}x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
ลบ \frac{1}{3} จากทั้งสองข้างของสมการ
x^{2}-\frac{7}{6}x=-\frac{1}{3}
ลบ \frac{1}{3} จากตัวเองทำให้เหลือ 0
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{7}{12}\right)^{2}
หาร -\frac{7}{6} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{7}{12} จากนั้นเพิ่มกำลังสองของ -\frac{7}{12} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
ยกกำลังสอง -\frac{7}{12} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
เพิ่ม -\frac{1}{3} ไปยัง \frac{49}{144} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
\left(x-\frac{7}{12}\right)^{2}=\frac{1}{144}
ตัวประกอบx^{2}-\frac{7}{6}x+\frac{49}{144} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{7}{12}=\frac{1}{12} x-\frac{7}{12}=-\frac{1}{12}
ทำให้ง่ายขึ้น
x=\frac{2}{3} x=\frac{1}{2}
เพิ่ม \frac{7}{12} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}