หาค่า x
x=3
x=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
0=2\left(x-1\right)^{2}-8
คูณ x-1 และ x-1 เพื่อรับ \left(x-1\right)^{2}
0=2\left(x^{2}-2x+1\right)-8
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{2}=a^{2}-2ab+b^{2} เพื่อขยาย \left(x-1\right)^{2}
0=2x^{2}-4x+2-8
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย x^{2}-2x+1
0=2x^{2}-4x-6
ลบ 8 จาก 2 เพื่อรับ -6
2x^{2}-4x-6=0
สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
x^{2}-2x-3=0
หารทั้งสองข้างด้วย 2
a+b=-2 ab=1\left(-3\right)=-3
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx-3 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=-3 b=1
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-3x\right)+\left(x-3\right)
เขียน x^{2}-2x-3 ใหม่เป็น \left(x^{2}-3x\right)+\left(x-3\right)
x\left(x-3\right)+x-3
แยกตัวประกอบ x ใน x^{2}-3x
\left(x-3\right)\left(x+1\right)
แยกตัวประกอบของพจน์ร่วม x-3 โดยใช้คุณสมบัติการแจกแจง
x=3 x=-1
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-3=0 และ x+1=0
0=2\left(x-1\right)^{2}-8
คูณ x-1 และ x-1 เพื่อรับ \left(x-1\right)^{2}
0=2\left(x^{2}-2x+1\right)-8
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{2}=a^{2}-2ab+b^{2} เพื่อขยาย \left(x-1\right)^{2}
0=2x^{2}-4x+2-8
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย x^{2}-2x+1
0=2x^{2}-4x-6
ลบ 8 จาก 2 เพื่อรับ -6
2x^{2}-4x-6=0
สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 2 แทน a, -4 แทน b และ -6 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
ยกกำลังสอง -4
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
คูณ -8 ด้วย -6
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
เพิ่ม 16 ไปยัง 48
x=\frac{-\left(-4\right)±8}{2\times 2}
หารากที่สองของ 64
x=\frac{4±8}{2\times 2}
ตรงข้ามกับ -4 คือ 4
x=\frac{4±8}{4}
คูณ 2 ด้วย 2
x=\frac{12}{4}
ตอนนี้ แก้สมการ x=\frac{4±8}{4} เมื่อ ± เป็นบวก เพิ่ม 4 ไปยัง 8
x=3
หาร 12 ด้วย 4
x=-\frac{4}{4}
ตอนนี้ แก้สมการ x=\frac{4±8}{4} เมื่อ ± เป็นลบ ลบ 8 จาก 4
x=-1
หาร -4 ด้วย 4
x=3 x=-1
สมการได้รับการแก้ไขแล้ว
0=2\left(x-1\right)^{2}-8
คูณ x-1 และ x-1 เพื่อรับ \left(x-1\right)^{2}
0=2\left(x^{2}-2x+1\right)-8
ใช้ทฤษฎีบททวินาม \left(a-b\right)^{2}=a^{2}-2ab+b^{2} เพื่อขยาย \left(x-1\right)^{2}
0=2x^{2}-4x+2-8
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย x^{2}-2x+1
0=2x^{2}-4x-6
ลบ 8 จาก 2 เพื่อรับ -6
2x^{2}-4x-6=0
สลับข้างเพื่อให้พจน์ตัวแปรทั้งหมดอยู่ทางด้านซ้าย
2x^{2}-4x=6
เพิ่ม 6 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
\frac{2x^{2}-4x}{2}=\frac{6}{2}
หารทั้งสองข้างด้วย 2
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
หารด้วย 2 เลิกทำการคูณด้วย 2
x^{2}-2x=\frac{6}{2}
หาร -4 ด้วย 2
x^{2}-2x=3
หาร 6 ด้วย 2
x^{2}-2x+1=3+1
หาร -2 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -1 จากนั้นเพิ่มกำลังสองของ -1 ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-2x+1=4
เพิ่ม 3 ไปยัง 1
\left(x-1\right)^{2}=4
ตัวประกอบx^{2}-2x+1 โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
หารากที่สองของทั้งสองข้างของสมการ
x-1=2 x-1=-2
ทำให้ง่ายขึ้น
x=3 x=-1
เพิ่ม 1 ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}