แยกตัวประกอบ
-7y\left(y+1\right)
หาค่า
-7y\left(y+1\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
7\left(-y^{2}-y\right)
แยกตัวประกอบ 7
y\left(-y-1\right)
พิจารณา -y^{2}-y แยกตัวประกอบ y
7y\left(-y-1\right)
เขียนนิพจน์ที่แยกตัวประกอบสมบูรณ์ใหม่
-7y^{2}-7y=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2\left(-7\right)}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
y=\frac{-\left(-7\right)±7}{2\left(-7\right)}
หารากที่สองของ \left(-7\right)^{2}
y=\frac{7±7}{2\left(-7\right)}
ตรงข้ามกับ -7 คือ 7
y=\frac{7±7}{-14}
คูณ 2 ด้วย -7
y=\frac{14}{-14}
ตอนนี้ แก้สมการ y=\frac{7±7}{-14} เมื่อ ± เป็นบวก เพิ่ม 7 ไปยัง 7
y=-1
หาร 14 ด้วย -14
y=\frac{0}{-14}
ตอนนี้ แก้สมการ y=\frac{7±7}{-14} เมื่อ ± เป็นลบ ลบ 7 จาก 7
y=0
หาร 0 ด้วย -14
-7y^{2}-7y=-7\left(y-\left(-1\right)\right)y
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -1 สำหรับ x_{1} และ 0 สำหรับ x_{2}
-7y^{2}-7y=-7\left(y+1\right)y
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}