หาค่า x
x=\sqrt{14}\approx 3.741657387
x=-\sqrt{14}\approx -3.741657387
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x^{2}-9=5
พิจารณา \left(x+3\right)\left(x-3\right) การคูณสามารถถูกแปลงเป็นยกกำลังสองต่างๆ โดยใช้กฎ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ได้ ยกกำลังสอง 3
x^{2}=5+9
เพิ่ม 9 ไปทั้งสองด้าน
x^{2}=14
เพิ่ม 5 และ 9 เพื่อให้ได้รับ 14
x=\sqrt{14} x=-\sqrt{14}
หารากที่สองของทั้งสองข้างของสมการ
x^{2}-9=5
พิจารณา \left(x+3\right)\left(x-3\right) การคูณสามารถถูกแปลงเป็นยกกำลังสองต่างๆ โดยใช้กฎ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ได้ ยกกำลังสอง 3
x^{2}-9-5=0
ลบ 5 จากทั้งสองด้าน
x^{2}-14=0
ลบ 5 จาก -9 เพื่อรับ -14
x=\frac{0±\sqrt{0^{2}-4\left(-14\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 0 แทน b และ -14 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{0±\sqrt{-4\left(-14\right)}}{2}
ยกกำลังสอง 0
x=\frac{0±\sqrt{56}}{2}
คูณ -4 ด้วย -14
x=\frac{0±2\sqrt{14}}{2}
หารากที่สองของ 56
x=\sqrt{14}
ตอนนี้ แก้สมการ x=\frac{0±2\sqrt{14}}{2} เมื่อ ± เป็นบวก
x=-\sqrt{14}
ตอนนี้ แก้สมการ x=\frac{0±2\sqrt{14}}{2} เมื่อ ± เป็นลบ
x=\sqrt{14} x=-\sqrt{14}
สมการได้รับการแก้ไขแล้ว
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}