ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x^{2}+6x+9=16
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(x+3\right)^{2}
x^{2}+6x+9-16=0
ลบ 16 จากทั้งสองด้าน
x^{2}+6x-7=0
ลบ 16 จาก 9 เพื่อรับ -7
a+b=6 ab=-7
เมื่อต้องการแก้สมการปัจจัย x^{2}+6x-7 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=-1 b=7
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x-1\right)\left(x+7\right)
เขียนนิพจน์แยกตัวประกอบใหม่ \left(x+a\right)\left(x+b\right) โดยใช้ค่าที่ได้รับ
x=1 x=-7
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-1=0 และ x+7=0
x^{2}+6x+9=16
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(x+3\right)^{2}
x^{2}+6x+9-16=0
ลบ 16 จากทั้งสองด้าน
x^{2}+6x-7=0
ลบ 16 จาก 9 เพื่อรับ -7
a+b=6 ab=1\left(-7\right)=-7
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx-7 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
a=-1 b=7
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-x\right)+\left(7x-7\right)
เขียน x^{2}+6x-7 ใหม่เป็น \left(x^{2}-x\right)+\left(7x-7\right)
x\left(x-1\right)+7\left(x-1\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 7 ใน
\left(x-1\right)\left(x+7\right)
แยกตัวประกอบของพจน์ร่วม x-1 โดยใช้คุณสมบัติการแจกแจง
x=1 x=-7
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-1=0 และ x+7=0
x^{2}+6x+9=16
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(x+3\right)^{2}
x^{2}+6x+9-16=0
ลบ 16 จากทั้งสองด้าน
x^{2}+6x-7=0
ลบ 16 จาก 9 เพื่อรับ -7
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 6 แทน b และ -7 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
ยกกำลังสอง 6
x=\frac{-6±\sqrt{36+28}}{2}
คูณ -4 ด้วย -7
x=\frac{-6±\sqrt{64}}{2}
เพิ่ม 36 ไปยัง 28
x=\frac{-6±8}{2}
หารากที่สองของ 64
x=\frac{2}{2}
ตอนนี้ แก้สมการ x=\frac{-6±8}{2} เมื่อ ± เป็นบวก เพิ่ม -6 ไปยัง 8
x=1
หาร 2 ด้วย 2
x=-\frac{14}{2}
ตอนนี้ แก้สมการ x=\frac{-6±8}{2} เมื่อ ± เป็นลบ ลบ 8 จาก -6
x=-7
หาร -14 ด้วย 2
x=1 x=-7
สมการได้รับการแก้ไขแล้ว
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
หารากที่สองของทั้งสองข้างของสมการ
x+3=4 x+3=-4
ทำให้ง่ายขึ้น
x=1 x=-7
ลบ 3 จากทั้งสองข้างของสมการ