ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image
หาอนุพันธ์ของ w.r.t. t
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\sqrt[3]{3125t^{125}}
ใช้กฎของเลขชี้กำลังเพื่อทำนิพจน์
\sqrt[3]{3125}\sqrt[3]{t^{125}}
เมื่อต้องการเพิ่มผลคูณของสองจำนวนขึ้นไปไปยังกำลัง ยกกำลังแต่ละจำนวน แล้วหาผลคูณ
5\times 5^{\frac{2}{3}}\sqrt[3]{t^{125}}
ยก 3125 ไปยังกำลัง \frac{1}{3}
5\times 5^{\frac{2}{3}}t^{125\times \frac{1}{3}}
เมื่อต้องการยกกำลังจำนวนยกกำลังอื่น ให้คูณเลขชี้กำลังด้วยกัน
5\times 5^{\frac{2}{3}}t^{\frac{125}{3}}
คูณ 125 ด้วย \frac{1}{3}
\frac{1}{3}\times \left(3125t^{125}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}t}(3125t^{125})
ถ้า F เป็นส่วนประกอบของสองฟังก์ชันที่หาอนุพันธ์ได้ f\left(u\right) และ u=g\left(x\right) นั่นคือ ถ้า F\left(x\right)=f\left(g\left(x\right)\right) ดังนั้น อนุพันธ์ของ F คืออนุพันธ์ของ f ที่สอดคล้องกับ u คูณด้วยอนุพันธ์ของ g ที่สอดคล้องกับ x นั่นคือ \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)
\frac{1}{3}\times \left(3125t^{125}\right)^{-\frac{2}{3}}\times 125\times 3125t^{125-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{390625}{3}t^{124}\times \left(3125t^{125}\right)^{-\frac{2}{3}}
ทำให้ง่ายขึ้น