( 3 - \frac { x } { 2 } - ( 1 - \frac { x } { 3 } ) = 7 - ( x - \frac { x } { 2 } )
หาค่า x
x=15
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
6\left(3-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
คูณทั้งสองข้างของสมการด้วย 6 ตัวคูณร่วมน้อยของ 2,3
18+6\left(-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 6 ด้วย 3-\frac{x}{2}
18-3x-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
ยกเลิกการหาตัวหารร่วม 2 ใน 6 และ 2
18-3x-6\left(1-\frac{x}{3}\right)=42-6\times \frac{1}{2}x
รวม x และ -\frac{x}{2} เพื่อให้ได้รับ \frac{1}{2}x
18-3x-6\left(1-\frac{x}{3}\right)=42-\frac{6}{2}x
คูณ 6 และ \frac{1}{2} เพื่อรับ \frac{6}{2}
18-3x-6\left(1-\frac{x}{3}\right)=42-3x
หาร 6 ด้วย 2 เพื่อรับ 3
18-3x-6\left(1-\frac{x}{3}\right)+3x=42
เพิ่ม 3x ไปทั้งสองด้าน
3\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+9x=126
คูณทั้งสองข้างของสมการด้วย 3
9\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+27x=378
คูณทั้งสองข้างของสมการด้วย 3
9\left(18-3x-6+6\times \frac{x}{3}\right)+27x=378
ใช้คุณสมบัติการแจกแจงเพื่อคูณ -6 ด้วย 1-\frac{x}{3}
9\left(18-3x-6+2x\right)+27x=378
ยกเลิกการหาตัวหารร่วม 3 ใน 6 และ 3
9\left(12-3x+2x\right)+27x=378
ลบ 6 จาก 18 เพื่อรับ 12
9\left(12-x\right)+27x=378
รวม -3x และ 2x เพื่อให้ได้รับ -x
108-9x+27x=378
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 9 ด้วย 12-x
108+18x=378
รวม -9x และ 27x เพื่อให้ได้รับ 18x
18x=378-108
ลบ 108 จากทั้งสองด้าน
18x=270
ลบ 108 จาก 378 เพื่อรับ 270
x=\frac{270}{18}
หารทั้งสองข้างด้วย 18
x=15
หาร 270 ด้วย 18 เพื่อรับ 15
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}