ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x^{2}-5x-3=114
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x+1 ด้วย x-3 และรวมพจน์ที่เหมือนกัน
2x^{2}-5x-3-114=0
ลบ 114 จากทั้งสองด้าน
2x^{2}-5x-117=0
ลบ 114 จาก -3 เพื่อรับ -117
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-117\right)}}{2\times 2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 2 แทน a, -5 แทน b และ -117 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-117\right)}}{2\times 2}
ยกกำลังสอง -5
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-117\right)}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-\left(-5\right)±\sqrt{25+936}}{2\times 2}
คูณ -8 ด้วย -117
x=\frac{-\left(-5\right)±\sqrt{961}}{2\times 2}
เพิ่ม 25 ไปยัง 936
x=\frac{-\left(-5\right)±31}{2\times 2}
หารากที่สองของ 961
x=\frac{5±31}{2\times 2}
ตรงข้ามกับ -5 คือ 5
x=\frac{5±31}{4}
คูณ 2 ด้วย 2
x=\frac{36}{4}
ตอนนี้ แก้สมการ x=\frac{5±31}{4} เมื่อ ± เป็นบวก เพิ่ม 5 ไปยัง 31
x=9
หาร 36 ด้วย 4
x=-\frac{26}{4}
ตอนนี้ แก้สมการ x=\frac{5±31}{4} เมื่อ ± เป็นลบ ลบ 31 จาก 5
x=-\frac{13}{2}
ทำเศษส่วน \frac{-26}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
x=9 x=-\frac{13}{2}
สมการได้รับการแก้ไขแล้ว
2x^{2}-5x-3=114
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2x+1 ด้วย x-3 และรวมพจน์ที่เหมือนกัน
2x^{2}-5x=114+3
เพิ่ม 3 ไปทั้งสองด้าน
2x^{2}-5x=117
เพิ่ม 114 และ 3 เพื่อให้ได้รับ 117
\frac{2x^{2}-5x}{2}=\frac{117}{2}
หารทั้งสองข้างด้วย 2
x^{2}-\frac{5}{2}x=\frac{117}{2}
หารด้วย 2 เลิกทำการคูณด้วย 2
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{117}{2}+\left(-\frac{5}{4}\right)^{2}
หาร -\frac{5}{2} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{5}{4} จากนั้นเพิ่มกำลังสองของ -\frac{5}{4} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{117}{2}+\frac{25}{16}
ยกกำลังสอง -\frac{5}{4} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{961}{16}
เพิ่ม \frac{117}{2} ไปยัง \frac{25}{16} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
\left(x-\frac{5}{4}\right)^{2}=\frac{961}{16}
ตัวประกอบx^{2}-\frac{5}{2}x+\frac{25}{16} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{961}{16}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{5}{4}=\frac{31}{4} x-\frac{5}{4}=-\frac{31}{4}
ทำให้ง่ายขึ้น
x=9 x=-\frac{13}{2}
เพิ่ม \frac{5}{4} ไปยังทั้งสองข้างของสมการ