หาค่า
0
แยกตัวประกอบ
0
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-5\times \frac{21+1}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
คูณ 7 และ 3 เพื่อรับ 21
-5\times \frac{22}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
เพิ่ม 21 และ 1 เพื่อให้ได้รับ 22
\frac{-5\times 22}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
แสดง -5\times \frac{22}{3} เป็นเศษส่วนเดียวกัน
\frac{-110}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
คูณ -5 และ 22 เพื่อรับ -110
-\frac{110}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
เศษส่วน \frac{-110}{3} สามารถเขียนใหม่เป็น -\frac{110}{3} โดยเอาเครื่องหมายลบออก
-\frac{110}{3}+7\left(-\frac{21+1}{3}\right)-\frac{12}{-\frac{3}{22}}
คูณ 7 และ 3 เพื่อรับ 21
-\frac{110}{3}+7\left(-\frac{22}{3}\right)-\frac{12}{-\frac{3}{22}}
เพิ่ม 21 และ 1 เพื่อให้ได้รับ 22
-\frac{110}{3}+\frac{7\left(-22\right)}{3}-\frac{12}{-\frac{3}{22}}
แสดง 7\left(-\frac{22}{3}\right) เป็นเศษส่วนเดียวกัน
-\frac{110}{3}+\frac{-154}{3}-\frac{12}{-\frac{3}{22}}
คูณ 7 และ -22 เพื่อรับ -154
-\frac{110}{3}-\frac{154}{3}-\frac{12}{-\frac{3}{22}}
เศษส่วน \frac{-154}{3} สามารถเขียนใหม่เป็น -\frac{154}{3} โดยเอาเครื่องหมายลบออก
\frac{-110-154}{3}-\frac{12}{-\frac{3}{22}}
เนื่องจาก -\frac{110}{3} และ \frac{154}{3} มีตัวส่วนเดียวกัน ให้ลบโดยการลบตัวเศษ
\frac{-264}{3}-\frac{12}{-\frac{3}{22}}
ลบ 154 จาก -110 เพื่อรับ -264
-88-\frac{12}{-\frac{3}{22}}
หาร -264 ด้วย 3 เพื่อรับ -88
-88-12\left(-\frac{22}{3}\right)
หาร 12 ด้วย -\frac{3}{22} โดยคูณ 12 ด้วยส่วนกลับของ -\frac{3}{22}
-88-\frac{12\left(-22\right)}{3}
แสดง 12\left(-\frac{22}{3}\right) เป็นเศษส่วนเดียวกัน
-88-\frac{-264}{3}
คูณ 12 และ -22 เพื่อรับ -264
-88-\left(-88\right)
หาร -264 ด้วย 3 เพื่อรับ -88
-88+88
ตรงข้ามกับ -88 คือ 88
0
เพิ่ม -88 และ 88 เพื่อให้ได้รับ 0
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}