ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-6 ab=9
เมื่อต้องการแก้ไขสมการ แยกตัวประกอบ x^{2}-6x+9 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
-1,-9 -3,-3
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเหมือนกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 9
-1-9=-10 -3-3=-6
คำนวณผลรวมสำหรับแต่ละคู่
a=-3 b=-3
ผลเฉลยเป็นคู่ที่ให้ผลรวม -6
\left(x-3\right)\left(x-3\right)
เขียนนิพจน์ที่แยกตัวประกอบ \left(x+a\right)\left(x+b\right) ใหม่โดยใช้ค่าที่ได้รับ
\left(x-3\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
x=3
เมื่อต้องการค้นหาผลเฉลยของสมการ ให้แก้ x-3=0
a+b=-6 ab=1\times 9=9
เมื่อต้องการแก้ไขสมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ต้องมีการเขียนใหม่ด้านซ้ายมืออีกครั้งเนื่องจาก x^{2}+ax+bx+9 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
-1,-9 -3,-3
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเหมือนกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 9
-1-9=-10 -3-3=-6
คำนวณผลรวมสำหรับแต่ละคู่
a=-3 b=-3
ผลเฉลยเป็นคู่ที่ให้ผลรวม -6
\left(x^{2}-3x\right)+\left(-3x+9\right)
เขียน x^{2}-6x+9 ใหม่เป็น \left(x^{2}-3x\right)+\left(-3x+9\right)
x\left(x-3\right)-3\left(x-3\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -3 ในกลุ่มที่สอง
\left(x-3\right)\left(x-3\right)
แยกตัวประกอบของพจน์ร่วม x-3 โดยใช้คุณสมบัติการแจกแจง
\left(x-3\right)^{2}
เขียนใหม่เป็นทวินามกำลังสอง
x=3
เมื่อต้องการค้นหาผลเฉลยของสมการ ให้แก้ x-3=0
x^{2}-6x+9=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -6 แทน b และ 9 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
ยกกำลังสอง -6
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
คูณ -4 ด้วย 9
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
เพิ่ม 36 ไปยัง -36
x=-\frac{-6}{2}
หารากที่สองของ 0
x=\frac{6}{2}
ตรงข้ามกับ -6 คือ 6
x=3
หาร 6 ด้วย 2
x^{2}-6x+9=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
\left(x-3\right)^{2}=0
ตัวประกอบ x^{2}-6x+9 โดยทั่วไป เมื่อ x^{2}+bx+c เป็นกำลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น \left(x+\frac{b}{2}\right)^{2} ได้เสมอ
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
หารากที่สองของทั้งสองข้างของสมการ
x-3=0 x-3=0
ทำให้ง่ายขึ้น
x=3 x=3
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=3
สมการได้รับการแก้ไขแล้ว ผลเฉลยจะเหมือนกัน