หาค่า x
x=1
x=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=-3 ab=2
เมื่อต้องการแก้ไขสมการ แยกตัวประกอบ x^{2}-3x+2 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
a=-2 b=-1
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเหมือนกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x-2\right)\left(x-1\right)
เขียนนิพจน์ที่แยกตัวประกอบ \left(x+a\right)\left(x+b\right) ใหม่โดยใช้ค่าที่ได้รับ
x=2 x=1
เมื่อต้องการค้นหาผลเฉลยสมการ ให้แก้ x-2=0 และ x-1=0
a+b=-3 ab=1\times 2=2
เมื่อต้องการแก้ไขสมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ต้องมีการเขียนใหม่ด้านซ้ายมืออีกครั้งเนื่องจาก x^{2}+ax+bx+2 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
a=-2 b=-1
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเหมือนกัน เนื่องจาก a+b เป็นค่าลบ a และ b เป็นค่าลบ คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-2x\right)+\left(-x+2\right)
เขียน x^{2}-3x+2 ใหม่เป็น \left(x^{2}-2x\right)+\left(-x+2\right)
x\left(x-2\right)-\left(x-2\right)
แยกตัวประกอบ x ในกลุ่มแรกและ -1 ในกลุ่มที่สอง
\left(x-2\right)\left(x-1\right)
แยกตัวประกอบของพจน์ร่วม x-2 โดยใช้คุณสมบัติการแจกแจง
x=2 x=1
เมื่อต้องการค้นหาผลเฉลยสมการ ให้แก้ x-2=0 และ x-1=0
x^{2}-3x+2=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -3 แทน b และ 2 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
ยกกำลังสอง -3
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
คูณ -4 ด้วย 2
x=\frac{-\left(-3\right)±\sqrt{1}}{2}
เพิ่ม 9 ไปยัง -8
x=\frac{-\left(-3\right)±1}{2}
หารากที่สองของ 1
x=\frac{3±1}{2}
ตรงข้ามกับ -3 คือ 3
x=\frac{4}{2}
ตอนนี้ แก้สมการ x=\frac{3±1}{2} เมื่อ ± เป็นบวก เพิ่ม 3 ไปยัง 1
x=2
หาร 4 ด้วย 2
x=\frac{2}{2}
ตอนนี้ แก้สมการ x=\frac{3±1}{2} เมื่อ ± เป็นลบ ลบ 1 จาก 3
x=1
หาร 2 ด้วย 2
x=2 x=1
สมการได้รับการแก้ไขแล้ว
x^{2}-3x+2=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}-3x+2-2=-2
ลบ 2 จากทั้งสองข้างของสมการ
x^{2}-3x=-2
ลบ 2 จากตัวเองทำให้เหลือ 0
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
หาร -3 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{3}{2} จากนั้นเพิ่มกำลังสองของ -\frac{3}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
ยกกำลังสอง -\frac{3}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
เพิ่ม -2 ไปยัง \frac{9}{4}
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
ตัวประกอบ x^{2}-3x+\frac{9}{4} โดยทั่วไป เมื่อ x^{2}+bx+c เป็นกำลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น \left(x+\frac{b}{2}\right)^{2} ได้เสมอ
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
ทำให้ง่ายขึ้น
x=2 x=1
เพิ่ม \frac{3}{2} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}