ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ
แบบทดสอบ
Polynomial

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-2 ab=1\left(-3\right)=-3
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องได้รับการเขียนใหม่เป็น x^{2}+ax+bx-3 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้ไข
a=-3 b=1
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้าม เนื่องจาก a+b เป็นค่าลบหมายเลขลบมีค่าสัมบูรณ์มากเกินกว่าค่าบวก คู่ดังกล่าวเท่านั้นที่เป็นผลเฉลยระบบ
\left(x^{2}-3x\right)+\left(x-3\right)
เขียน x^{2}-2x-3 ใหม่เป็น \left(x^{2}-3x\right)+\left(x-3\right)
x\left(x-3\right)+x-3
แยกตัวประกอบ x ใน x^{2}-3x
\left(x-3\right)\left(x+1\right)
แยกตัวประกอบของพจน์ร่วม x-3 โดยใช้คุณสมบัติการแจกแจง
x^{2}-2x-3=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
ยกกำลังสอง -2
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
คูณ -4 ด้วย -3
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
เพิ่ม 4 ไปยัง 12
x=\frac{-\left(-2\right)±4}{2}
หารากที่สองของ 16
x=\frac{2±4}{2}
ตรงข้ามกับ -2 คือ 2
x=\frac{6}{2}
ตอนนี้ แก้สมการ x=\frac{2±4}{2} เมื่อ ± เป็นบวก เพิ่ม 2 ไปยัง 4
x=3
หาร 6 ด้วย 2
x=-\frac{2}{2}
ตอนนี้ แก้สมการ x=\frac{2±4}{2} เมื่อ ± เป็นลบ ลบ 4 จาก 2
x=-1
หาร -2 ด้วย 2
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 3 สำหรับ x_{1} และ -1 สำหรับ x_{2}
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q