หาค่า x
x = \frac{\sqrt{309} - 3}{2} \approx 7.289197916
x=\frac{-\sqrt{309}-3}{2}\approx -10.289197916
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x^{2}+3x-65=10
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x^{2}+3x-65-10=10-10
ลบ 10 จากทั้งสองข้างของสมการ
x^{2}+3x-65-10=0
ลบ 10 จากตัวเองทำให้เหลือ 0
x^{2}+3x-75=0
ลบ 10 จาก -65
x=\frac{-3±\sqrt{3^{2}-4\left(-75\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 3 แทน b และ -75 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-3±\sqrt{9-4\left(-75\right)}}{2}
ยกกำลังสอง 3
x=\frac{-3±\sqrt{9+300}}{2}
คูณ -4 ด้วย -75
x=\frac{-3±\sqrt{309}}{2}
เพิ่ม 9 ไปยัง 300
x=\frac{\sqrt{309}-3}{2}
ตอนนี้ แก้สมการ x=\frac{-3±\sqrt{309}}{2} เมื่อ ± เป็นบวก เพิ่ม -3 ไปยัง \sqrt{309}
x=\frac{-\sqrt{309}-3}{2}
ตอนนี้ แก้สมการ x=\frac{-3±\sqrt{309}}{2} เมื่อ ± เป็นลบ ลบ \sqrt{309} จาก -3
x=\frac{\sqrt{309}-3}{2} x=\frac{-\sqrt{309}-3}{2}
สมการได้รับการแก้ไขแล้ว
x^{2}+3x-65=10
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}+3x-65-\left(-65\right)=10-\left(-65\right)
เพิ่ม 65 ไปยังทั้งสองข้างของสมการ
x^{2}+3x=10-\left(-65\right)
ลบ -65 จากตัวเองทำให้เหลือ 0
x^{2}+3x=75
ลบ -65 จาก 10
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=75+\left(\frac{3}{2}\right)^{2}
หาร 3 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ \frac{3}{2} จากนั้นเพิ่มกำลังสองของ \frac{3}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}+3x+\frac{9}{4}=75+\frac{9}{4}
ยกกำลังสอง \frac{3}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}+3x+\frac{9}{4}=\frac{309}{4}
เพิ่ม 75 ไปยัง \frac{9}{4}
\left(x+\frac{3}{2}\right)^{2}=\frac{309}{4}
ตัวประกอบx^{2}+3x+\frac{9}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{309}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x+\frac{3}{2}=\frac{\sqrt{309}}{2} x+\frac{3}{2}=-\frac{\sqrt{309}}{2}
ทำให้ง่ายขึ้น
x=\frac{\sqrt{309}-3}{2} x=\frac{-\sqrt{309}-3}{2}
ลบ \frac{3}{2} จากทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}