ข้ามไปที่เนื้อหาหลัก
หาค่า x (complex solution)
Tick mark Image
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\left(144x^{2}+168x+49\right)\left(3x+2\right)\left(2x+1\right)=3
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(12x+7\right)^{2}
\left(432x^{3}+792x^{2}+483x+98\right)\left(2x+1\right)=3
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 144x^{2}+168x+49 ด้วย 3x+2 และรวมพจน์ที่เหมือนกัน
864x^{4}+2016x^{3}+1758x^{2}+679x+98=3
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 432x^{3}+792x^{2}+483x+98 ด้วย 2x+1 และรวมพจน์ที่เหมือนกัน
864x^{4}+2016x^{3}+1758x^{2}+679x+98-3=0
ลบ 3 จากทั้งสองด้าน
864x^{4}+2016x^{3}+1758x^{2}+679x+95=0
ลบ 3 จาก 98 เพื่อรับ 95
±\frac{95}{864},±\frac{95}{432},±\frac{95}{288},±\frac{95}{216},±\frac{95}{144},±\frac{95}{108},±\frac{95}{96},±\frac{95}{72},±\frac{95}{54},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{27},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{864},±\frac{19}{432},±\frac{19}{288},±\frac{19}{216},±\frac{19}{144},±\frac{19}{108},±\frac{19}{96},±\frac{19}{72},±\frac{19}{54},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{27},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{864},±\frac{5}{432},±\frac{5}{288},±\frac{5}{216},±\frac{5}{144},±\frac{5}{108},±\frac{5}{96},±\frac{5}{72},±\frac{5}{54},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{27},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{864},±\frac{1}{432},±\frac{1}{288},±\frac{1}{216},±\frac{1}{144},±\frac{1}{108},±\frac{1}{96},±\frac{1}{72},±\frac{1}{54},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 95 และ q หารค่าสัมประสิทธิ์นำ 864 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=-\frac{1}{3}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
288x^{3}+576x^{2}+394x+95=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 864x^{4}+2016x^{3}+1758x^{2}+679x+95 ด้วย 3\left(x+\frac{1}{3}\right)=3x+1 เพื่อรับ 288x^{3}+576x^{2}+394x+95 แก้สมการที่ผลลัพธ์เท่ากับ 0
±\frac{95}{288},±\frac{95}{144},±\frac{95}{96},±\frac{95}{72},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{288},±\frac{19}{144},±\frac{19}{96},±\frac{19}{72},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{288},±\frac{5}{144},±\frac{5}{96},±\frac{5}{72},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{288},±\frac{1}{144},±\frac{1}{96},±\frac{1}{72},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 95 และ q หารค่าสัมประสิทธิ์นำ 288 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=-\frac{5}{6}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
48x^{2}+56x+19=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 288x^{3}+576x^{2}+394x+95 ด้วย 6\left(x+\frac{5}{6}\right)=6x+5 เพื่อรับ 48x^{2}+56x+19 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{-56±\sqrt{56^{2}-4\times 48\times 19}}{2\times 48}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 48 สำหรับ a 56 สำหรับ b และ 19 สำหรับ c ในสูตรกำลังสอง
x=\frac{-56±\sqrt{-512}}{96}
ทำการคำนวณ
x=-\frac{\sqrt{2}i}{6}-\frac{7}{12} x=\frac{\sqrt{2}i}{6}-\frac{7}{12}
แก้สมการ 48x^{2}+56x+19=0 เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
x=-\frac{1}{3} x=-\frac{5}{6} x=-\frac{\sqrt{2}i}{6}-\frac{7}{12} x=\frac{\sqrt{2}i}{6}-\frac{7}{12}
แสดงรายการโซลูชันที่พบทั้งหมด
\left(144x^{2}+168x+49\right)\left(3x+2\right)\left(2x+1\right)=3
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(12x+7\right)^{2}
\left(432x^{3}+792x^{2}+483x+98\right)\left(2x+1\right)=3
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 144x^{2}+168x+49 ด้วย 3x+2 และรวมพจน์ที่เหมือนกัน
864x^{4}+2016x^{3}+1758x^{2}+679x+98=3
ใช้คุณสมบัติการแจกแจงเพื่อคูณ 432x^{3}+792x^{2}+483x+98 ด้วย 2x+1 และรวมพจน์ที่เหมือนกัน
864x^{4}+2016x^{3}+1758x^{2}+679x+98-3=0
ลบ 3 จากทั้งสองด้าน
864x^{4}+2016x^{3}+1758x^{2}+679x+95=0
ลบ 3 จาก 98 เพื่อรับ 95
±\frac{95}{864},±\frac{95}{432},±\frac{95}{288},±\frac{95}{216},±\frac{95}{144},±\frac{95}{108},±\frac{95}{96},±\frac{95}{72},±\frac{95}{54},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{27},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{864},±\frac{19}{432},±\frac{19}{288},±\frac{19}{216},±\frac{19}{144},±\frac{19}{108},±\frac{19}{96},±\frac{19}{72},±\frac{19}{54},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{27},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{864},±\frac{5}{432},±\frac{5}{288},±\frac{5}{216},±\frac{5}{144},±\frac{5}{108},±\frac{5}{96},±\frac{5}{72},±\frac{5}{54},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{27},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{864},±\frac{1}{432},±\frac{1}{288},±\frac{1}{216},±\frac{1}{144},±\frac{1}{108},±\frac{1}{96},±\frac{1}{72},±\frac{1}{54},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 95 และ q หารค่าสัมประสิทธิ์นำ 864 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=-\frac{1}{3}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
288x^{3}+576x^{2}+394x+95=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 864x^{4}+2016x^{3}+1758x^{2}+679x+95 ด้วย 3\left(x+\frac{1}{3}\right)=3x+1 เพื่อรับ 288x^{3}+576x^{2}+394x+95 แก้สมการที่ผลลัพธ์เท่ากับ 0
±\frac{95}{288},±\frac{95}{144},±\frac{95}{96},±\frac{95}{72},±\frac{95}{48},±\frac{95}{36},±\frac{95}{32},±\frac{95}{24},±\frac{95}{18},±\frac{95}{16},±\frac{95}{12},±\frac{95}{9},±\frac{95}{8},±\frac{95}{6},±\frac{95}{4},±\frac{95}{3},±\frac{95}{2},±95,±\frac{19}{288},±\frac{19}{144},±\frac{19}{96},±\frac{19}{72},±\frac{19}{48},±\frac{19}{36},±\frac{19}{32},±\frac{19}{24},±\frac{19}{18},±\frac{19}{16},±\frac{19}{12},±\frac{19}{9},±\frac{19}{8},±\frac{19}{6},±\frac{19}{4},±\frac{19}{3},±\frac{19}{2},±19,±\frac{5}{288},±\frac{5}{144},±\frac{5}{96},±\frac{5}{72},±\frac{5}{48},±\frac{5}{36},±\frac{5}{32},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{288},±\frac{1}{144},±\frac{1}{96},±\frac{1}{72},±\frac{1}{48},±\frac{1}{36},±\frac{1}{32},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
ตามทฤษฎีบทรากตรรกยะ รากตรรกยะทั้งหมดของพหุนามอยู่ในรูปแบบ \frac{p}{q} ที่ p หารพจน์ค่าคงที่ 95 และ q หารค่าสัมประสิทธิ์นำ 288 แสดงรายการผู้สมัคร \frac{p}{q} ทั้งหมด
x=-\frac{5}{6}
ค้นหารากดังกล่าวหนึ่งรายการโดยลองใช้ค่าจำนวนเต็มทั้งหมด โดยเริ่มต้นจากค่าที่น้อยที่สุดตามค่าสัมบูรณ์ ถ้าไม่พบรากจำนวนเต็ม ให้ลองใช้เศษส่วน
48x^{2}+56x+19=0
ตามทฤษฎีบทตัวประกอบ x-k เป็นตัวประกอบของพหุนามสำหรับแต่ละรากของ k หาร 288x^{3}+576x^{2}+394x+95 ด้วย 6\left(x+\frac{5}{6}\right)=6x+5 เพื่อรับ 48x^{2}+56x+19 แก้สมการที่ผลลัพธ์เท่ากับ 0
x=\frac{-56±\sqrt{56^{2}-4\times 48\times 19}}{2\times 48}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 48 สำหรับ a 56 สำหรับ b และ 19 สำหรับ c ในสูตรกำลังสอง
x=\frac{-56±\sqrt{-512}}{96}
ทำการคำนวณ
x\in \emptyset
เนื่องจากไม่ได้กำหนดรากที่สองของจำนวนลบในเขตข้อมูลจำนวนจริง จึงไม่มีผลเฉลยอยู่
x=-\frac{1}{3} x=-\frac{5}{6}
แสดงรายการโซลูชันที่พบทั้งหมด