ข้ามไปที่เนื้อหาหลัก
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
ใช้ทฤษฎีบททวินาม \left(a+b\right)^{2}=a^{2}+2ab+b^{2} เพื่อขยาย \left(\sqrt{6}+\sqrt{2}\right)^{2}
6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
รากที่สองของ \sqrt{6} คือ 6
6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
แยกตัวประกอบ 6=2\times 3 เขียนรากที่สองของผลิตภัณฑ์ \sqrt{2\times 3} เป็นผลคูณของตารางรากที่มีการ \sqrt{2}\sqrt{3}
6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
คูณ \sqrt{2} และ \sqrt{2} เพื่อรับ 2
6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
คูณ 2 และ 2 เพื่อรับ 4
6+4\sqrt{3}+2-2\sqrt{2}\sqrt{6}+\sqrt{2}
รากที่สองของ \sqrt{2} คือ 2
8+4\sqrt{3}-2\sqrt{2}\sqrt{6}+\sqrt{2}
เพิ่ม 6 และ 2 เพื่อให้ได้รับ 8
8+4\sqrt{3}-2\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{2}
แยกตัวประกอบ 6=2\times 3 เขียนรากที่สองของผลิตภัณฑ์ \sqrt{2\times 3} เป็นผลคูณของตารางรากที่มีการ \sqrt{2}\sqrt{3}
8+4\sqrt{3}-2\times 2\sqrt{3}+\sqrt{2}
คูณ \sqrt{2} และ \sqrt{2} เพื่อรับ 2
8+4\sqrt{3}-4\sqrt{3}+\sqrt{2}
คูณ 2 และ 2 เพื่อรับ 4
8+\sqrt{2}
รวม 4\sqrt{3} และ -4\sqrt{3} เพื่อให้ได้รับ 0