ข้ามไปที่เนื้อหาหลัก
หาอนุพันธ์ของ w.r.t. x
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x)+x+4-x-4)
เมื่อต้องการค้นหาค่าตรงข้ามของ x+4 ให้ค้นหาค่าตรงข้ามของแต่ละพจน์
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x)+4-4)
รวม x และ -x เพื่อให้ได้รับ 0
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x))
ลบ 4 จาก 4 เพื่อรับ 0
\cos(12x^{1})\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1})
ถ้า F เป็นส่วนประกอบของสองฟังก์ชันที่หาอนุพันธ์ได้ f\left(u\right) และ u=g\left(x\right) นั่นคือ ถ้า F\left(x\right)=f\left(g\left(x\right)\right) ดังนั้น อนุพันธ์ของ F คืออนุพันธ์ของ f ที่สอดคล้องกับ u คูณด้วยอนุพันธ์ของ g ที่สอดคล้องกับ x นั่นคือ \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)
\cos(12x^{1})\times 12x^{1-1}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
12\cos(12x^{1})
ทำให้ง่ายขึ้น
12\cos(12x)
สำหรับพจน์ใดๆ ที่ t ให้ t^{1}=t