หาอนุพันธ์ของ w.r.t. θ
\cos(\theta )
หาค่า
\sin(\theta )
กราฟ
แบบทดสอบ
Trigonometry
\sin \theta
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))=\left(\lim_{h\to 0}\frac{\sin(\theta +h)-\sin(\theta )}{h}\right)
สำหรับฟังก์ชัน f\left(x\right), อนุพันธ์คือขีดจำกัดของ \frac{f\left(x+h\right)-f\left(x\right)}{h} เป็น h ไปที่ 0 ถ้าข้อจำกัดมีอยู่
\lim_{h\to 0}\frac{\sin(h+\theta )-\sin(\theta )}{h}
ใช้สูตรผลรวมของไซน์
\lim_{h\to 0}\frac{\sin(\theta )\left(\cos(h)-1\right)+\cos(\theta )\sin(h)}{h}
แยกตัวประกอบ \sin(\theta )
\left(\lim_{h\to 0}\sin(\theta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\theta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
เขียนขีดจำกัดเขียนใหม่
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ใช้ข้อเท็จจริงที่ \theta เป็นค่าคงที่เมื่อคำนวณขีดจำกัดเป็น h ไปที่ 0
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )
ขีดจำกัด \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } คือ 1
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ในการหาค่าข้อจำกัด \lim_{h\to 0}\frac{\cos(h)-1}{h} ขั้นแรก คูณตัวเศษและตัวส่วนโดย \cos(h)+1
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
คูณ \cos(h)+1 ด้วย \cos(h)-1
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ใช้เอกลักษณ์ของพีทาโกรัส
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
เขียนขีดจำกัดเขียนใหม่
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ขีดจำกัด \lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } คือ 1
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ใช้ข้อเท็จจริงที่ \frac{\sin(h)}{\cos(h)+1} เป็นแบบต่อเนื่องที่ 0
\cos(\theta )
แทนที่ค่า 0 ลงในนิพจน์ \sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}