หาค่า x, y
x=2
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
-5x+y=-11,4x-6y=14
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-5x+y=-11
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-5x=-y-11
ลบ y จากทั้งสองข้างของสมการ
x=-\frac{1}{5}\left(-y-11\right)
หารทั้งสองข้างด้วย -5
x=\frac{1}{5}y+\frac{11}{5}
คูณ -\frac{1}{5} ด้วย -y-11
4\left(\frac{1}{5}y+\frac{11}{5}\right)-6y=14
ทดแทน \frac{11+y}{5} สำหรับ x ในอีกสมการหนึ่ง 4x-6y=14
\frac{4}{5}y+\frac{44}{5}-6y=14
คูณ 4 ด้วย \frac{11+y}{5}
-\frac{26}{5}y+\frac{44}{5}=14
เพิ่ม \frac{4y}{5} ไปยัง -6y
-\frac{26}{5}y=\frac{26}{5}
ลบ \frac{44}{5} จากทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างของสมการด้วย -\frac{26}{5} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{1}{5}\left(-1\right)+\frac{11}{5}
ทดแทน -1 สำหรับ y ใน x=\frac{1}{5}y+\frac{11}{5} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-1+11}{5}
คูณ \frac{1}{5} ด้วย -1
x=2
เพิ่ม \frac{11}{5} ไปยัง -\frac{1}{5} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
-5x+y=-11,4x-6y=14
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\14\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-5\left(-6\right)-4}&-\frac{1}{-5\left(-6\right)-4}\\-\frac{4}{-5\left(-6\right)-4}&-\frac{5}{-5\left(-6\right)-4}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}&-\frac{1}{26}\\-\frac{2}{13}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-11\right)-\frac{1}{26}\times 14\\-\frac{2}{13}\left(-11\right)-\frac{5}{26}\times 14\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
-5x+y=-11,4x-6y=14
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\left(-5\right)x+4y=4\left(-11\right),-5\times 4x-5\left(-6\right)y=-5\times 14
เพื่อทำให้ -5x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -5
-20x+4y=-44,-20x+30y=-70
ทำให้ง่ายขึ้น
-20x+20x+4y-30y=-44+70
ลบ -20x+30y=-70 จาก -20x+4y=-44 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y-30y=-44+70
เพิ่ม -20x ไปยัง 20x ตัดพจน์ -20x และ 20x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-26y=-44+70
เพิ่ม 4y ไปยัง -30y
-26y=26
เพิ่ม -44 ไปยัง 70
y=-1
หารทั้งสองข้างด้วย -26
4x-6\left(-1\right)=14
ทดแทน -1 สำหรับ y ใน 4x-6y=14 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x+6=14
คูณ -6 ด้วย -1
4x=8
ลบ 6 จากทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 4
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}