หาค่า x, y
x=7
y=5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x-1-y=1
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=1+1
เพิ่ม 1 ไปทั้งสองด้าน
x-y=2
เพิ่ม 1 และ 1 เพื่อให้ได้รับ 2
2y-2=x+1
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-1
2y-2-x=1
ลบ x จากทั้งสองด้าน
2y-x=1+2
เพิ่ม 2 ไปทั้งสองด้าน
2y-x=3
เพิ่ม 1 และ 2 เพื่อให้ได้รับ 3
x-y=2,-x+2y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+2
เพิ่ม y ไปยังทั้งสองข้างของสมการ
-\left(y+2\right)+2y=3
ทดแทน y+2 สำหรับ x ในอีกสมการหนึ่ง -x+2y=3
-y-2+2y=3
คูณ -1 ด้วย y+2
y-2=3
เพิ่ม -y ไปยัง 2y
y=5
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=5+2
ทดแทน 5 สำหรับ y ใน x=y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=7
เพิ่ม 2 ไปยัง 5
x=7,y=5
ระบบถูกแก้แล้วในขณะนี้
x-1-y=1
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=1+1
เพิ่ม 1 ไปทั้งสองด้าน
x-y=2
เพิ่ม 1 และ 1 เพื่อให้ได้รับ 2
2y-2=x+1
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-1
2y-2-x=1
ลบ x จากทั้งสองด้าน
2y-x=1+2
เพิ่ม 2 ไปทั้งสองด้าน
2y-x=3
เพิ่ม 1 และ 2 เพื่อให้ได้รับ 3
x-y=2,-x+2y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{1}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 2+3\\2+3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=7,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
x-1-y=1
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=1+1
เพิ่ม 1 ไปทั้งสองด้าน
x-y=2
เพิ่ม 1 และ 1 เพื่อให้ได้รับ 2
2y-2=x+1
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ 2 ด้วย y-1
2y-2-x=1
ลบ x จากทั้งสองด้าน
2y-x=1+2
เพิ่ม 2 ไปทั้งสองด้าน
2y-x=3
เพิ่ม 1 และ 2 เพื่อให้ได้รับ 3
x-y=2,-x+2y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-x-\left(-y\right)=-2,-x+2y=3
เพื่อทำให้ x และ -x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-x+y=-2,-x+2y=3
ทำให้ง่ายขึ้น
-x+x+y-2y=-2-3
ลบ -x+2y=3 จาก -x+y=-2 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
y-2y=-2-3
เพิ่ม -x ไปยัง x ตัดพจน์ -x และ x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=-2-3
เพิ่ม y ไปยัง -2y
-y=-5
เพิ่ม -2 ไปยัง -3
y=5
หารทั้งสองข้างด้วย -1
-x+2\times 5=3
ทดแทน 5 สำหรับ y ใน -x+2y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-x+10=3
คูณ 2 ด้วย 5
-x=-7
ลบ 10 จากทั้งสองข้างของสมการ
x=7
หารทั้งสองข้างด้วย -1
x=7,y=5
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}