ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y-x=-7
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+2x=-1
พิจารณาสมการที่สอง เพิ่ม 2x ไปทั้งสองด้าน
y-x=-7,y+2x=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-x=-7
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=x-7
เพิ่ม x ไปยังทั้งสองข้างของสมการ
x-7+2x=-1
ทดแทน x-7 สำหรับ y ในอีกสมการหนึ่ง y+2x=-1
3x-7=-1
เพิ่ม x ไปยัง 2x
3x=6
เพิ่ม 7 ไปยังทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 3
y=2-7
ทดแทน 2 สำหรับ x ใน y=x-7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-5
เพิ่ม -7 ไปยัง 2
y=-5,x=2
ระบบถูกแก้แล้วในขณะนี้
y-x=-7
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+2x=-1
พิจารณาสมการที่สอง เพิ่ม 2x ไปทั้งสองด้าน
y-x=-7,y+2x=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\1&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\\-\frac{1}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-5,x=2
แยกเมทริกซ์องค์ประกอบ y และ x
y-x=-7
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+2x=-1
พิจารณาสมการที่สอง เพิ่ม 2x ไปทั้งสองด้าน
y-x=-7,y+2x=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-x-2x=-7+1
ลบ y+2x=-1 จาก y-x=-7 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-x-2x=-7+1
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-3x=-7+1
เพิ่ม -x ไปยัง -2x
-3x=-6
เพิ่ม -7 ไปยัง 1
x=2
หารทั้งสองข้างด้วย -3
y+2\times 2=-1
ทดแทน 2 สำหรับ x ใน y+2x=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y+4=-1
คูณ 2 ด้วย 2
y=-5
ลบ 4 จากทั้งสองข้างของสมการ
y=-5,x=2
ระบบถูกแก้แล้วในขณะนี้