หาค่า y, x
x=-1
y=4
กราฟ
แบบทดสอบ
Simultaneous Equation
\left. \begin{array} { l } { y = x + 5 } \\ { y = - 4 x } \end{array} \right.
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y-x=5
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+4x=0
พิจารณาสมการที่สอง เพิ่ม 4x ไปทั้งสองด้าน
y-x=5,y+4x=0
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-x=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=x+5
เพิ่ม x ไปยังทั้งสองข้างของสมการ
x+5+4x=0
ทดแทน x+5 สำหรับ y ในอีกสมการหนึ่ง y+4x=0
5x+5=0
เพิ่ม x ไปยัง 4x
5x=-5
ลบ 5 จากทั้งสองข้างของสมการ
x=-1
หารทั้งสองข้างด้วย 5
y=-1+5
ทดแทน -1 สำหรับ x ใน y=x+5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=4
เพิ่ม 5 ไปยัง -1
y=4,x=-1
ระบบถูกแก้แล้วในขณะนี้
y-x=5
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+4x=0
พิจารณาสมการที่สอง เพิ่ม 4x ไปทั้งสองด้าน
y-x=5,y+4x=0
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\1&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-1\right)}&-\frac{-1}{4-\left(-1\right)}\\-\frac{1}{4-\left(-1\right)}&\frac{1}{4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\times 5\\-\frac{1}{5}\times 5\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=4,x=-1
แยกเมทริกซ์องค์ประกอบ y และ x
y-x=5
พิจารณาสมการแรก ลบ x จากทั้งสองด้าน
y+4x=0
พิจารณาสมการที่สอง เพิ่ม 4x ไปทั้งสองด้าน
y-x=5,y+4x=0
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-x-4x=5
ลบ y+4x=0 จาก y-x=5 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-x-4x=5
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5x=5
เพิ่ม -x ไปยัง -4x
x=-1
หารทั้งสองข้างด้วย -5
y+4\left(-1\right)=0
ทดแทน -1 สำหรับ x ใน y+4x=0 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y-4=0
คูณ 4 ด้วย -1
y=4
เพิ่ม 4 ไปยังทั้งสองข้างของสมการ
y=4,x=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}