หาค่า y, x
x=\frac{1}{8}=0.125
y = \frac{57}{8} = 7\frac{1}{8} = 7.125
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y-9x=6
พิจารณาสมการแรก ลบ 9x จากทั้งสองด้าน
y-x=7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-9x=6,y-x=7
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-9x=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=9x+6
เพิ่ม 9x ไปยังทั้งสองข้างของสมการ
9x+6-x=7
ทดแทน 9x+6 สำหรับ y ในอีกสมการหนึ่ง y-x=7
8x+6=7
เพิ่ม 9x ไปยัง -x
8x=1
ลบ 6 จากทั้งสองข้างของสมการ
x=\frac{1}{8}
หารทั้งสองข้างด้วย 8
y=9\times \frac{1}{8}+6
ทดแทน \frac{1}{8} สำหรับ x ใน y=9x+6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=\frac{9}{8}+6
คูณ 9 ด้วย \frac{1}{8}
y=\frac{57}{8}
เพิ่ม 6 ไปยัง \frac{9}{8}
y=\frac{57}{8},x=\frac{1}{8}
ระบบถูกแก้แล้วในขณะนี้
y-9x=6
พิจารณาสมการแรก ลบ 9x จากทั้งสองด้าน
y-x=7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-9x=6,y-x=7
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-9\right)}&-\frac{-9}{-1-\left(-9\right)}\\-\frac{1}{-1-\left(-9\right)}&\frac{1}{-1-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{9}{8}\\-\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 6+\frac{9}{8}\times 7\\-\frac{1}{8}\times 6+\frac{1}{8}\times 7\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{57}{8}\\\frac{1}{8}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=\frac{57}{8},x=\frac{1}{8}
แยกเมทริกซ์องค์ประกอบ y และ x
y-9x=6
พิจารณาสมการแรก ลบ 9x จากทั้งสองด้าน
y-x=7
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-9x=6,y-x=7
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-9x+x=6-7
ลบ y-x=7 จาก y-9x=6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-9x+x=6-7
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-8x=6-7
เพิ่ม -9x ไปยัง x
-8x=-1
เพิ่ม 6 ไปยัง -7
x=\frac{1}{8}
หารทั้งสองข้างด้วย -8
y-\frac{1}{8}=7
ทดแทน \frac{1}{8} สำหรับ x ใน y-x=7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=\frac{57}{8}
เพิ่ม \frac{1}{8} ไปยังทั้งสองข้างของสมการ
y=\frac{57}{8},x=\frac{1}{8}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}