ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y-8x=-18
พิจารณาสมการแรก ลบ 8x จากทั้งสองด้าน
y-x=-4
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-8x=-18,y-x=-4
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-8x=-18
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=8x-18
เพิ่ม 8x ไปยังทั้งสองข้างของสมการ
8x-18-x=-4
ทดแทน 8x-18 สำหรับ y ในอีกสมการหนึ่ง y-x=-4
7x-18=-4
เพิ่ม 8x ไปยัง -x
7x=14
เพิ่ม 18 ไปยังทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 7
y=8\times 2-18
ทดแทน 2 สำหรับ x ใน y=8x-18 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=16-18
คูณ 8 ด้วย 2
y=-2
เพิ่ม -18 ไปยัง 16
y=-2,x=2
ระบบถูกแก้แล้วในขณะนี้
y-8x=-18
พิจารณาสมการแรก ลบ 8x จากทั้งสองด้าน
y-x=-4
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-8x=-18,y-x=-4
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\-4\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-8\right)}&-\frac{-8}{-1-\left(-8\right)}\\-\frac{1}{-1-\left(-8\right)}&\frac{1}{-1-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-18\\-4\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{8}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-18\right)+\frac{8}{7}\left(-4\right)\\-\frac{1}{7}\left(-18\right)+\frac{1}{7}\left(-4\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-2,x=2
แยกเมทริกซ์องค์ประกอบ y และ x
y-8x=-18
พิจารณาสมการแรก ลบ 8x จากทั้งสองด้าน
y-x=-4
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
y-8x=-18,y-x=-4
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-8x+x=-18+4
ลบ y-x=-4 จาก y-8x=-18 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-8x+x=-18+4
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-7x=-18+4
เพิ่ม -8x ไปยัง x
-7x=-14
เพิ่ม -18 ไปยัง 4
x=2
หารทั้งสองข้างด้วย -7
y-2=-4
ทดแทน 2 สำหรับ x ใน y-x=-4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-2
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
y=-2,x=2
ระบบถูกแก้แล้วในขณะนี้