ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y-4x=0
พิจารณาสมการแรก ลบ 4x จากทั้งสองด้าน
y-3x=-1
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y-4x=0,y-3x=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-4x=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=4x
เพิ่ม 4x ไปยังทั้งสองข้างของสมการ
4x-3x=-1
ทดแทน 4x สำหรับ y ในอีกสมการหนึ่ง y-3x=-1
x=-1
เพิ่ม 4x ไปยัง -3x
y=4\left(-1\right)
ทดแทน -1 สำหรับ x ใน y=4x เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-4
คูณ 4 ด้วย -1
y=-4,x=-1
ขณะนี้ได้แก้ไขระบบเรียบร้อยแล้ว
y-4x=0
พิจารณาสมการแรก ลบ 4x จากทั้งสองด้าน
y-3x=-1
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y-4x=0,y-3x=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-4\\1&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-4\right)}&-\frac{-4}{-3-\left(-4\right)}\\-\frac{1}{-3-\left(-4\right)}&\frac{1}{-3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
สำหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถถูกเขียนขึ้นเป็นปัญหาการคูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&4\\-1&1\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\left(-1\right)\\-1\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-4,x=-1
แยกเมทริกซ์องค์ประกอบ y และ x
y-4x=0
พิจารณาสมการแรก ลบ 4x จากทั้งสองด้าน
y-3x=-1
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y-4x=0,y-3x=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-4x+3x=1
ลบ y-3x=-1 จาก y-4x=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-4x+3x=1
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-x=1
เพิ่ม -4x ไปยัง 3x
x=-1
หารทั้งสองข้างด้วย -1
y-3\left(-1\right)=-1
ทดแทน -1 สำหรับ x ใน y-3x=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y+3=-1
คูณ -3 ด้วย -1
y=-4
ลบ 3 จากทั้งสองข้างของสมการ
y=-4,x=-1
ขณะนี้ได้แก้ไขระบบเรียบร้อยแล้ว