ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-3x=-5
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y+3x=1,y-3x=-5
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y+3x=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=-3x+1
ลบ 3x จากทั้งสองข้างของสมการ
-3x+1-3x=-5
ทดแทน -3x+1 สำหรับ y ในอีกสมการหนึ่ง y-3x=-5
-6x+1=-5
เพิ่ม -3x ไปยัง -3x
-6x=-6
ลบ 1 จากทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย -6
y=-3+1
ทดแทน 1 สำหรับ x ใน y=-3x+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-2
เพิ่ม 1 ไปยัง -3
y=-2,x=1
ระบบถูกแก้แล้วในขณะนี้
y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-3x=-5
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y+3x=1,y-3x=-5
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&3\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1&3\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&3\\1&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-3}&-\frac{3}{-3-3}\\-\frac{1}{-3-3}&\frac{1}{-3-3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\left(-5\right)\\\frac{1}{6}-\frac{1}{6}\left(-5\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-2,x=1
แยกเมทริกซ์องค์ประกอบ y และ x
y+3x=1
พิจารณาสมการแรก เพิ่ม 3x ไปทั้งสองด้าน
y-3x=-5
พิจารณาสมการที่สอง ลบ 3x จากทั้งสองด้าน
y+3x=1,y-3x=-5
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y+3x+3x=1+5
ลบ y-3x=-5 จาก y+3x=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x+3x=1+5
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
6x=1+5
เพิ่ม 3x ไปยัง 3x
6x=6
เพิ่ม 1 ไปยัง 5
x=1
หารทั้งสองข้างด้วย 6
y-3=-5
ทดแทน 1 สำหรับ x ใน y-3x=-5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-2
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
y=-2,x=1
ระบบถูกแก้แล้วในขณะนี้