ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y+2x=4
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y-2x=4
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
y+2x=4,y-2x=4
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y+2x=4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=-2x+4
ลบ 2x จากทั้งสองข้างของสมการ
-2x+4-2x=4
ทดแทน -2x+4 สำหรับ y ในอีกสมการหนึ่ง y-2x=4
-4x+4=4
เพิ่ม -2x ไปยัง -2x
-4x=0
ลบ 4 จากทั้งสองข้างของสมการ
x=0
หารทั้งสองข้างด้วย -4
y=4
ทดแทน 0 สำหรับ x ใน y=-2x+4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=4,x=0
ระบบถูกแก้แล้วในขณะนี้
y+2x=4
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y-2x=4
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
y+2x=4,y-2x=4
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\1&-2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{2}\times 4\\\frac{1}{4}\times 4-\frac{1}{4}\times 4\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=4,x=0
แยกเมทริกซ์องค์ประกอบ y และ x
y+2x=4
พิจารณาสมการแรก เพิ่ม 2x ไปทั้งสองด้าน
y-2x=4
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
y+2x=4,y-2x=4
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y+2x+2x=4-4
ลบ y-2x=4 จาก y+2x=4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2x+2x=4-4
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
4x=4-4
เพิ่ม 2x ไปยัง 2x
4x=0
เพิ่ม 4 ไปยัง -4
x=0
หารทั้งสองข้างด้วย 4
y=4
ทดแทน 0 สำหรับ x ใน y-2x=4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=4,x=0
ระบบถูกแก้แล้วในขณะนี้