หาค่า y, x
x = -\frac{63}{2} = -31\frac{1}{2} = -31.5
y = -\frac{9}{2} = -4\frac{1}{2} = -4.5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y-\frac{1}{3}x=6
พิจารณาสมการแรก ลบ \frac{1}{3}x จากทั้งสองด้าน
y-\frac{1}{9}x=-1
พิจารณาสมการที่สอง ลบ \frac{1}{9}x จากทั้งสองด้าน
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-\frac{1}{3}x=6
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=\frac{1}{3}x+6
เพิ่ม \frac{x}{3} ไปยังทั้งสองข้างของสมการ
\frac{1}{3}x+6-\frac{1}{9}x=-1
ทดแทน \frac{x}{3}+6 สำหรับ y ในอีกสมการหนึ่ง y-\frac{1}{9}x=-1
\frac{2}{9}x+6=-1
เพิ่ม \frac{x}{3} ไปยัง -\frac{x}{9}
\frac{2}{9}x=-7
ลบ 6 จากทั้งสองข้างของสมการ
x=-\frac{63}{2}
หารทั้งสองข้างของสมการด้วย \frac{2}{9} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
y=\frac{1}{3}\left(-\frac{63}{2}\right)+6
ทดแทน -\frac{63}{2} สำหรับ x ใน y=\frac{1}{3}x+6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-\frac{21}{2}+6
คูณ \frac{1}{3} ครั้ง -\frac{63}{2} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
y=-\frac{9}{2}
เพิ่ม 6 ไปยัง -\frac{21}{2}
y=-\frac{9}{2},x=-\frac{63}{2}
ระบบถูกแก้แล้วในขณะนี้
y-\frac{1}{3}x=6
พิจารณาสมการแรก ลบ \frac{1}{3}x จากทั้งสองด้าน
y-\frac{1}{9}x=-1
พิจารณาสมการที่สอง ลบ \frac{1}{9}x จากทั้งสองด้าน
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{9}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\-\frac{9}{2}&\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 6+\frac{3}{2}\left(-1\right)\\-\frac{9}{2}\times 6+\frac{9}{2}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{2}\\-\frac{63}{2}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-\frac{9}{2},x=-\frac{63}{2}
แยกเมทริกซ์องค์ประกอบ y และ x
y-\frac{1}{3}x=6
พิจารณาสมการแรก ลบ \frac{1}{3}x จากทั้งสองด้าน
y-\frac{1}{9}x=-1
พิจารณาสมการที่สอง ลบ \frac{1}{9}x จากทั้งสองด้าน
y-\frac{1}{3}x=6,y-\frac{1}{9}x=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-\frac{1}{3}x+\frac{1}{9}x=6+1
ลบ y-\frac{1}{9}x=-1 จาก y-\frac{1}{3}x=6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-\frac{1}{3}x+\frac{1}{9}x=6+1
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-\frac{2}{9}x=6+1
เพิ่ม -\frac{x}{3} ไปยัง \frac{x}{9}
-\frac{2}{9}x=7
เพิ่ม 6 ไปยัง 1
x=-\frac{63}{2}
หารทั้งสองข้างของสมการด้วย -\frac{2}{9} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
y-\frac{1}{9}\left(-\frac{63}{2}\right)=-1
ทดแทน -\frac{63}{2} สำหรับ x ใน y-\frac{1}{9}x=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y+\frac{7}{2}=-1
คูณ -\frac{1}{9} ครั้ง -\frac{63}{2} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
y=-\frac{9}{2}
ลบ \frac{7}{2} จากทั้งสองข้างของสมการ
y=-\frac{9}{2},x=-\frac{63}{2}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}