ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x^{2}-x-18=0
เมื่อต้องการแก้อสมการ ให้แยกตัวประกอบด้านซ้ายมือ สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-18\right)}}{2}
สามารถแก้ไขสมการทั้งหมดของฟอร์ม ax^{2}+bx+c=0 ได้โดยใช้สูตรกำลังสอง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} แทน 1 สำหรับ a -1 สำหรับ b และ -18 สำหรับ c ในสูตรกำลังสอง
x=\frac{1±\sqrt{73}}{2}
ทำการคำนวณ
x=\frac{\sqrt{73}+1}{2} x=\frac{1-\sqrt{73}}{2}
แก้สมการ x=\frac{1±\sqrt{73}}{2} เมื่อ ± เป็นบวก และเมื่อ ± เป็นลบ
\left(x-\frac{\sqrt{73}+1}{2}\right)\left(x-\frac{1-\sqrt{73}}{2}\right)>0
เขียนอสมการใหม่โดยใช้ผลเฉลยที่ได้
x-\frac{\sqrt{73}+1}{2}<0 x-\frac{1-\sqrt{73}}{2}<0
เพื่อให้ผลคูณเป็นค่าบวก x-\frac{\sqrt{73}+1}{2} และ x-\frac{1-\sqrt{73}}{2} ต้องเป็นค่าลบทั้งคู่ หรือค่าบวกทั้งคู่ พิจารณากรณีเมื่อ x-\frac{\sqrt{73}+1}{2} และ x-\frac{1-\sqrt{73}}{2} เป็นค่าลบทั้งคู่
x<\frac{1-\sqrt{73}}{2}
ผลเฉลยที่แก้ไขอสมการทั้งสองคือ x<\frac{1-\sqrt{73}}{2}
x-\frac{1-\sqrt{73}}{2}>0 x-\frac{\sqrt{73}+1}{2}>0
พิจารณากรณีเมื่อ x-\frac{\sqrt{73}+1}{2} และ x-\frac{1-\sqrt{73}}{2} เป็นค่าบวกทั้งคู่
x>\frac{\sqrt{73}+1}{2}
ผลเฉลยที่แก้ไขอสมการทั้งสองคือ x>\frac{\sqrt{73}+1}{2}
x<\frac{1-\sqrt{73}}{2}\text{; }x>\frac{\sqrt{73}+1}{2}
ผลเฉลยสุดท้ายคือการรวมผลเฉลยที่ได้