หาค่า x, y
x=0
y=0
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x=-30y
พิจารณาสมการแรก คูณ 3 และ -10 เพื่อรับ -30
10\left(-30\right)y+3y=0
ทดแทน -30y สำหรับ x ในอีกสมการหนึ่ง 10x+3y=0
-300y+3y=0
คูณ 10 ด้วย -30y
-297y=0
เพิ่ม -300y ไปยัง 3y
y=0
หารทั้งสองข้างด้วย -297
x=0
ทดแทน 0 สำหรับ y ใน x=-30y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=0,y=0
ระบบถูกแก้แล้วในขณะนี้
x=-30y
พิจารณาสมการแรก คูณ 3 และ -10 เพื่อรับ -30
x+30y=0
เพิ่ม 30y ไปทั้งสองด้าน
y=\frac{-x\times 10}{3}
พิจารณาสมการที่สอง แสดง \frac{x}{3}\left(-10\right) เป็นเศษส่วนเดียวกัน
y=\frac{-10x}{3}
คูณ -1 และ 10 เพื่อรับ -10
y-\frac{-10x}{3}=0
ลบ \frac{-10x}{3} จากทั้งสองด้าน
3y+10x=0
คูณทั้งสองข้างของสมการด้วย 3
x+30y=0,10x+3y=0
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&30\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}1&30\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&30\\10&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-30\times 10}&-\frac{30}{3-30\times 10}\\-\frac{10}{3-30\times 10}&\frac{1}{3-30\times 10}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{99}&\frac{10}{99}\\\frac{10}{297}&-\frac{1}{297}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
คูณเมทริกซ์
x=0,y=0
แยกเมทริกซ์องค์ประกอบ x และ y
x=-30y
พิจารณาสมการแรก คูณ 3 และ -10 เพื่อรับ -30
x+30y=0
เพิ่ม 30y ไปทั้งสองด้าน
y=\frac{-x\times 10}{3}
พิจารณาสมการที่สอง แสดง \frac{x}{3}\left(-10\right) เป็นเศษส่วนเดียวกัน
y=\frac{-10x}{3}
คูณ -1 และ 10 เพื่อรับ -10
y-\frac{-10x}{3}=0
ลบ \frac{-10x}{3} จากทั้งสองด้าน
3y+10x=0
คูณทั้งสองข้างของสมการด้วย 3
x+30y=0,10x+3y=0
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
10x+10\times 30y=0,10x+3y=0
เพื่อทำให้ x และ 10x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 10 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
10x+300y=0,10x+3y=0
ทำให้ง่ายขึ้น
10x-10x+300y-3y=0
ลบ 10x+3y=0 จาก 10x+300y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
300y-3y=0
เพิ่ม 10x ไปยัง -10x ตัดพจน์ 10x และ -10x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
297y=0
เพิ่ม 300y ไปยัง -3y
y=0
หารทั้งสองข้างด้วย 297
10x=0
ทดแทน 0 สำหรับ y ใน 10x+3y=0 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=0
หารทั้งสองข้างด้วย 10
x=0,y=0
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}