ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+y=5,2x+3y=20
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y+5
ลบ y จากทั้งสองข้างของสมการ
2\left(-y+5\right)+3y=20
ทดแทน -y+5 สำหรับ x ในอีกสมการหนึ่ง 2x+3y=20
-2y+10+3y=20
คูณ 2 ด้วย -y+5
y+10=20
เพิ่ม -2y ไปยัง 3y
y=10
ลบ 10 จากทั้งสองข้างของสมการ
x=-10+5
ทดแทน 10 สำหรับ y ใน x=-y+5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-5
เพิ่ม 5 ไปยัง -10
x=-5,y=10
ระบบถูกแก้แล้วในขณะนี้
x+y=5,2x+3y=20
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\20\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\2&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 5-20\\-2\times 5+20\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-5,y=10
แยกเมทริกซ์องค์ประกอบ x และ y
x+y=5,2x+3y=20
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+2y=2\times 5,2x+3y=20
เพื่อทำให้ x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
2x+2y=10,2x+3y=20
ทำให้ง่ายขึ้น
2x-2x+2y-3y=10-20
ลบ 2x+3y=20 จาก 2x+2y=10 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y-3y=10-20
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=10-20
เพิ่ม 2y ไปยัง -3y
-y=-10
เพิ่ม 10 ไปยัง -20
y=10
หารทั้งสองข้างด้วย -1
2x+3\times 10=20
ทดแทน 10 สำหรับ y ใน 2x+3y=20 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x+30=20
คูณ 3 ด้วย 10
2x=-10
ลบ 30 จากทั้งสองข้างของสมการ
x=-5
หารทั้งสองข้างด้วย 2
x=-5,y=10
ระบบถูกแก้แล้วในขณะนี้