หาค่า x, y
x=-1
y=-3
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y-5x=2
พิจารณาสมการที่สอง ลบ 5x จากทั้งสองด้าน
x+y=-4,-5x+y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=-4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y-4
ลบ y จากทั้งสองข้างของสมการ
-5\left(-y-4\right)+y=2
ทดแทน -y-4 สำหรับ x ในอีกสมการหนึ่ง -5x+y=2
5y+20+y=2
คูณ -5 ด้วย -y-4
6y+20=2
เพิ่ม 5y ไปยัง y
6y=-18
ลบ 20 จากทั้งสองข้างของสมการ
y=-3
หารทั้งสองข้างด้วย 6
x=-\left(-3\right)-4
ทดแทน -3 สำหรับ y ใน x=-y-4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=3-4
คูณ -1 ด้วย -3
x=-1
เพิ่ม -4 ไปยัง 3
x=-1,y=-3
ระบบถูกแก้แล้วในขณะนี้
y-5x=2
พิจารณาสมการที่สอง ลบ 5x จากทั้งสองด้าน
x+y=-4,-5x+y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}1&1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\-5&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-5\right)}&-\frac{1}{1-\left(-5\right)}\\-\frac{-5}{1-\left(-5\right)}&\frac{1}{1-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{5}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-4\right)-\frac{1}{6}\times 2\\\frac{5}{6}\left(-4\right)+\frac{1}{6}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-1,y=-3
แยกเมทริกซ์องค์ประกอบ x และ y
y-5x=2
พิจารณาสมการที่สอง ลบ 5x จากทั้งสองด้าน
x+y=-4,-5x+y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x+5x+y-y=-4-2
ลบ -5x+y=2 จาก x+y=-4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
x+5x=-4-2
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
6x=-4-2
เพิ่ม x ไปยัง 5x
6x=-6
เพิ่ม -4 ไปยัง -2
x=-1
หารทั้งสองข้างด้วย 6
-5\left(-1\right)+y=2
ทดแทน -1 สำหรับ x ใน -5x+y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
5+y=2
คูณ -5 ด้วย -1
y=-3
ลบ 5 จากทั้งสองข้างของสมการ
x=-1,y=-3
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}