ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+2y=8,x-3y=9
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=8
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y+8
ลบ 2y จากทั้งสองข้างของสมการ
-2y+8-3y=9
ทดแทน -2y+8 สำหรับ x ในอีกสมการหนึ่ง x-3y=9
-5y+8=9
เพิ่ม -2y ไปยัง -3y
-5y=1
ลบ 8 จากทั้งสองข้างของสมการ
y=-\frac{1}{5}
หารทั้งสองข้างด้วย -5
x=-2\left(-\frac{1}{5}\right)+8
ทดแทน -\frac{1}{5} สำหรับ y ใน x=-2y+8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{2}{5}+8
คูณ -2 ด้วย -\frac{1}{5}
x=\frac{42}{5}
เพิ่ม 8 ไปยัง \frac{2}{5}
x=\frac{42}{5},y=-\frac{1}{5}
ระบบถูกแก้แล้วในขณะนี้
x+2y=8,x-3y=9
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\1&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8+\frac{2}{5}\times 9\\\frac{1}{5}\times 8-\frac{1}{5}\times 9\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{42}{5}\\-\frac{1}{5}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{42}{5},y=-\frac{1}{5}
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=8,x-3y=9
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x+2y+3y=8-9
ลบ x-3y=9 จาก x+2y=8 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y+3y=8-9
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=8-9
เพิ่ม 2y ไปยัง 3y
5y=-1
เพิ่ม 8 ไปยัง -9
y=-\frac{1}{5}
หารทั้งสองข้างด้วย 5
x-3\left(-\frac{1}{5}\right)=9
ทดแทน -\frac{1}{5} สำหรับ y ใน x-3y=9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x+\frac{3}{5}=9
คูณ -3 ด้วย -\frac{1}{5}
x=\frac{42}{5}
ลบ \frac{3}{5} จากทั้งสองข้างของสมการ
x=\frac{42}{5},y=-\frac{1}{5}
ระบบถูกแก้แล้วในขณะนี้