ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+2y=3,2x+2y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y+3
ลบ 2y จากทั้งสองข้างของสมการ
2\left(-2y+3\right)+2y=3
ทดแทน -2y+3 สำหรับ x ในอีกสมการหนึ่ง 2x+2y=3
-4y+6+2y=3
คูณ 2 ด้วย -2y+3
-2y+6=3
เพิ่ม -4y ไปยัง 2y
-2y=-3
ลบ 6 จากทั้งสองข้างของสมการ
y=\frac{3}{2}
หารทั้งสองข้างด้วย -2
x=-2\times \frac{3}{2}+3
ทดแทน \frac{3}{2} สำหรับ y ใน x=-2y+3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3+3
คูณ -2 ด้วย \frac{3}{2}
x=0
เพิ่ม 3 ไปยัง -3
x=0,y=\frac{3}{2}
ระบบถูกแก้แล้วในขณะนี้
x+2y=3,2x+2y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\2&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 2}&-\frac{2}{2-2\times 2}\\-\frac{2}{2-2\times 2}&\frac{1}{2-2\times 2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3+3\\3-\frac{1}{2}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{3}{2}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=0,y=\frac{3}{2}
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=3,2x+2y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-2x+2y-2y=3-3
ลบ 2x+2y=3 จาก x+2y=3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
x-2x=3-3
เพิ่ม 2y ไปยัง -2y ตัดพจน์ 2y และ -2y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-x=3-3
เพิ่ม x ไปยัง -2x
-x=0
เพิ่ม 3 ไปยัง -3
x=0
หารทั้งสองข้างด้วย -1
2y=3
ทดแทน 0 สำหรับ x ใน 2x+2y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=\frac{3}{2}
หารทั้งสองข้างด้วย 2
x=0,y=\frac{3}{2}
ระบบถูกแก้แล้วในขณะนี้