ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+2y=1,-2x+y=-4
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y+1
ลบ 2y จากทั้งสองข้างของสมการ
-2\left(-2y+1\right)+y=-4
ทดแทน -2y+1 สำหรับ x ในอีกสมการหนึ่ง -2x+y=-4
4y-2+y=-4
คูณ -2 ด้วย -2y+1
5y-2=-4
เพิ่ม 4y ไปยัง y
5y=-2
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
y=-\frac{2}{5}
หารทั้งสองข้างด้วย 5
x=-2\left(-\frac{2}{5}\right)+1
ทดแทน -\frac{2}{5} สำหรับ y ใน x=-2y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{4}{5}+1
คูณ -2 ด้วย -\frac{2}{5}
x=\frac{9}{5}
เพิ่ม 1 ไปยัง \frac{4}{5}
x=\frac{9}{5},y=-\frac{2}{5}
ระบบถูกแก้แล้วในขณะนี้
x+2y=1,-2x+y=-4
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\-2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}-\frac{2}{5}\left(-4\right)\\\frac{2}{5}+\frac{1}{5}\left(-4\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\-\frac{2}{5}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{9}{5},y=-\frac{2}{5}
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=1,-2x+y=-4
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-2x-2\times 2y=-2,-2x+y=-4
เพื่อทำให้ x และ -2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-2x-4y=-2,-2x+y=-4
ทำให้ง่ายขึ้น
-2x+2x-4y-y=-2+4
ลบ -2x+y=-4 จาก -2x-4y=-2 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-4y-y=-2+4
เพิ่ม -2x ไปยัง 2x ตัดพจน์ -2x และ 2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5y=-2+4
เพิ่ม -4y ไปยัง -y
-5y=2
เพิ่ม -2 ไปยัง 4
y=-\frac{2}{5}
หารทั้งสองข้างด้วย -5
-2x-\frac{2}{5}=-4
ทดแทน -\frac{2}{5} สำหรับ y ใน -2x+y=-4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-2x=-\frac{18}{5}
เพิ่ม \frac{2}{5} ไปยังทั้งสองข้างของสมการ
x=\frac{9}{5}
หารทั้งสองข้างด้วย -2
x=\frac{9}{5},y=-\frac{2}{5}
ระบบถูกแก้แล้วในขณะนี้