ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

7x-2y=11,x+y=8
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
7x-2y=11
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
7x=2y+11
เพิ่ม 2y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{7}\left(2y+11\right)
หารทั้งสองข้างด้วย 7
x=\frac{2}{7}y+\frac{11}{7}
คูณ \frac{1}{7} ด้วย 2y+11
\frac{2}{7}y+\frac{11}{7}+y=8
ทดแทน \frac{2y+11}{7} สำหรับ x ในอีกสมการหนึ่ง x+y=8
\frac{9}{7}y+\frac{11}{7}=8
เพิ่ม \frac{2y}{7} ไปยัง y
\frac{9}{7}y=\frac{45}{7}
ลบ \frac{11}{7} จากทั้งสองข้างของสมการ
y=5
หารทั้งสองข้างของสมการด้วย \frac{9}{7} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{2}{7}\times 5+\frac{11}{7}
ทดแทน 5 สำหรับ y ใน x=\frac{2}{7}y+\frac{11}{7} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{10+11}{7}
คูณ \frac{2}{7} ด้วย 5
x=3
เพิ่ม \frac{11}{7} ไปยัง \frac{10}{7} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=5
ระบบถูกแก้แล้วในขณะนี้
7x-2y=11,x+y=8
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}7&-2\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-\left(-2\right)}&-\frac{-2}{7-\left(-2\right)}\\-\frac{1}{7-\left(-2\right)}&\frac{7}{7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{2}{9}\\-\frac{1}{9}&\frac{7}{9}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 11+\frac{2}{9}\times 8\\-\frac{1}{9}\times 11+\frac{7}{9}\times 8\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
7x-2y=11,x+y=8
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
7x-2y=11,7x+7y=7\times 8
เพื่อทำให้ 7x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 7
7x-2y=11,7x+7y=56
ทำให้ง่ายขึ้น
7x-7x-2y-7y=11-56
ลบ 7x+7y=56 จาก 7x-2y=11 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2y-7y=11-56
เพิ่ม 7x ไปยัง -7x ตัดพจน์ 7x และ -7x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-9y=11-56
เพิ่ม -2y ไปยัง -7y
-9y=-45
เพิ่ม 11 ไปยัง -56
y=5
หารทั้งสองข้างด้วย -9
x+5=8
ทดแทน 5 สำหรับ y ใน x+y=8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=3
ลบ 5 จากทั้งสองข้างของสมการ
x=3,y=5
ระบบถูกแก้แล้วในขณะนี้