หาค่า x, y
x=1
y=0
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
5x-5y=5,-6x+5y=-6
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
5x-5y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
5x=5y+5
เพิ่ม 5y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{5}\left(5y+5\right)
หารทั้งสองข้างด้วย 5
x=y+1
คูณ \frac{1}{5} ด้วย 5+5y
-6\left(y+1\right)+5y=-6
ทดแทน y+1 สำหรับ x ในอีกสมการหนึ่ง -6x+5y=-6
-6y-6+5y=-6
คูณ -6 ด้วย y+1
-y-6=-6
เพิ่ม -6y ไปยัง 5y
-y=0
เพิ่ม 6 ไปยังทั้งสองข้างของสมการ
y=0
หารทั้งสองข้างด้วย -1
x=1
ทดแทน 0 สำหรับ y ใน x=y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=1,y=0
ระบบถูกแก้แล้วในขณะนี้
5x-5y=5,-6x+5y=-6
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-6\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}&-\frac{-5}{5\times 5-\left(-5\left(-6\right)\right)}\\-\frac{-6}{5\times 5-\left(-5\left(-6\right)\right)}&\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{6}{5}&-1\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-\left(-6\right)\\-\frac{6}{5}\times 5-\left(-6\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=0
แยกเมทริกซ์องค์ประกอบ x และ y
5x-5y=5,-6x+5y=-6
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-6\times 5x-6\left(-5\right)y=-6\times 5,5\left(-6\right)x+5\times 5y=5\left(-6\right)
เพื่อทำให้ 5x และ -6x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -6 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 5
-30x+30y=-30,-30x+25y=-30
ทำให้ง่ายขึ้น
-30x+30x+30y-25y=-30+30
ลบ -30x+25y=-30 จาก -30x+30y=-30 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
30y-25y=-30+30
เพิ่ม -30x ไปยัง 30x ตัดพจน์ -30x และ 30x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=-30+30
เพิ่ม 30y ไปยัง -25y
5y=0
เพิ่ม -30 ไปยัง 30
y=0
หารทั้งสองข้างด้วย 5
-6x=-6
ทดแทน 0 สำหรับ y ใน -6x+5y=-6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=1
หารทั้งสองข้างด้วย -6
x=1,y=0
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}