ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

5x+2y=0,6x-y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
5x+2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
5x=-2y
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{5}\left(-2\right)y
หารทั้งสองข้างด้วย 5
x=-\frac{2}{5}y
คูณ \frac{1}{5} ด้วย -2y
6\left(-\frac{2}{5}\right)y-y=2
ทดแทน -\frac{2y}{5} สำหรับ x ในอีกสมการหนึ่ง 6x-y=2
-\frac{12}{5}y-y=2
คูณ 6 ด้วย -\frac{2y}{5}
-\frac{17}{5}y=2
เพิ่ม -\frac{12y}{5} ไปยัง -y
y=-\frac{10}{17}
หารทั้งสองข้างของสมการด้วย -\frac{17}{5} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{2}{5}\left(-\frac{10}{17}\right)
ทดแทน -\frac{10}{17} สำหรับ y ใน x=-\frac{2}{5}y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{4}{17}
คูณ -\frac{2}{5} ครั้ง -\frac{10}{17} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{4}{17},y=-\frac{10}{17}
ระบบถูกแก้แล้วในขณะนี้
5x+2y=0,6x-y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}5&2\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}5&2\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}5&2\\6&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-2\times 6}&-\frac{2}{5\left(-1\right)-2\times 6}\\-\frac{6}{5\left(-1\right)-2\times 6}&\frac{5}{5\left(-1\right)-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{2}{17}\\\frac{6}{17}&-\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 2\\-\frac{5}{17}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\\-\frac{10}{17}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{4}{17},y=-\frac{10}{17}
แยกเมทริกซ์องค์ประกอบ x และ y
5x+2y=0,6x-y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
6\times 5x+6\times 2y=0,5\times 6x+5\left(-1\right)y=5\times 2
เพื่อทำให้ 5x และ 6x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 6 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 5
30x+12y=0,30x-5y=10
ทำให้ง่ายขึ้น
30x-30x+12y+5y=-10
ลบ 30x-5y=10 จาก 30x+12y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
12y+5y=-10
เพิ่ม 30x ไปยัง -30x ตัดพจน์ 30x และ -30x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
17y=-10
เพิ่ม 12y ไปยัง 5y
y=-\frac{10}{17}
หารทั้งสองข้างด้วย 17
6x-\left(-\frac{10}{17}\right)=2
ทดแทน -\frac{10}{17} สำหรับ y ใน 6x-y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
6x=\frac{24}{17}
ลบ \frac{10}{17} จากทั้งสองข้างของสมการ
x=\frac{4}{17}
หารทั้งสองข้างด้วย 6
x=\frac{4}{17},y=-\frac{10}{17}
ระบบถูกแก้แล้วในขณะนี้