หาค่า x, y
x=3
y=-2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
4x+5y=2,3x+4y=1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
4x+5y=2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
4x=-5y+2
ลบ 5y จากทั้งสองข้างของสมการ
x=\frac{1}{4}\left(-5y+2\right)
หารทั้งสองข้างด้วย 4
x=-\frac{5}{4}y+\frac{1}{2}
คูณ \frac{1}{4} ด้วย -5y+2
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
ทดแทน -\frac{5y}{4}+\frac{1}{2} สำหรับ x ในอีกสมการหนึ่ง 3x+4y=1
-\frac{15}{4}y+\frac{3}{2}+4y=1
คูณ 3 ด้วย -\frac{5y}{4}+\frac{1}{2}
\frac{1}{4}y+\frac{3}{2}=1
เพิ่ม -\frac{15y}{4} ไปยัง 4y
\frac{1}{4}y=-\frac{1}{2}
ลบ \frac{3}{2} จากทั้งสองข้างของสมการ
y=-2
คูณทั้งสองข้างด้วย 4
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
ทดแทน -2 สำหรับ y ใน x=-\frac{5}{4}y+\frac{1}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{5+1}{2}
คูณ -\frac{5}{4} ด้วย -2
x=3
เพิ่ม \frac{1}{2} ไปยัง \frac{5}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=3,y=-2
ระบบถูกแก้แล้วในขณะนี้
4x+5y=2,3x+4y=1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}4&5\\3&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=3,y=-2
แยกเมทริกซ์องค์ประกอบ x และ y
4x+5y=2,3x+4y=1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
เพื่อทำให้ 4x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 4
12x+15y=6,12x+16y=4
ทำให้ง่ายขึ้น
12x-12x+15y-16y=6-4
ลบ 12x+16y=4 จาก 12x+15y=6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
15y-16y=6-4
เพิ่ม 12x ไปยัง -12x ตัดพจน์ 12x และ -12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=6-4
เพิ่ม 15y ไปยัง -16y
-y=2
เพิ่ม 6 ไปยัง -4
y=-2
หารทั้งสองข้างด้วย -1
3x+4\left(-2\right)=1
ทดแทน -2 สำหรับ y ใน 3x+4y=1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x-8=1
คูณ 4 ด้วย -2
3x=9
เพิ่ม 8 ไปยังทั้งสองข้างของสมการ
x=3
หารทั้งสองข้างด้วย 3
x=3,y=-2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}