หาค่า x, y
x=-3
y=7
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
4x+2y=2,x+y=4
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
4x+2y=2
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
4x=-2y+2
ลบ 2y จากทั้งสองข้างของสมการ
x=\frac{1}{4}\left(-2y+2\right)
หารทั้งสองข้างด้วย 4
x=-\frac{1}{2}y+\frac{1}{2}
คูณ \frac{1}{4} ด้วย -2y+2
-\frac{1}{2}y+\frac{1}{2}+y=4
ทดแทน \frac{-y+1}{2} สำหรับ x ในอีกสมการหนึ่ง x+y=4
\frac{1}{2}y+\frac{1}{2}=4
เพิ่ม -\frac{y}{2} ไปยัง y
\frac{1}{2}y=\frac{7}{2}
ลบ \frac{1}{2} จากทั้งสองข้างของสมการ
y=7
คูณทั้งสองข้างด้วย 2
x=-\frac{1}{2}\times 7+\frac{1}{2}
ทดแทน 7 สำหรับ y ใน x=-\frac{1}{2}y+\frac{1}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-7+1}{2}
คูณ -\frac{1}{2} ด้วย 7
x=-3
เพิ่ม \frac{1}{2} ไปยัง -\frac{7}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=-3,y=7
ระบบถูกแก้แล้วในขณะนี้
4x+2y=2,x+y=4
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}4&2\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{2}{4-2}\\-\frac{1}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-1\\-\frac{1}{2}&2\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2-4\\-\frac{1}{2}\times 2+2\times 4\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-3,y=7
แยกเมทริกซ์องค์ประกอบ x และ y
4x+2y=2,x+y=4
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4x+2y=2,4x+4y=4\times 4
เพื่อทำให้ 4x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 4
4x+2y=2,4x+4y=16
ทำให้ง่ายขึ้น
4x-4x+2y-4y=2-16
ลบ 4x+4y=16 จาก 4x+2y=2 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y-4y=2-16
เพิ่ม 4x ไปยัง -4x ตัดพจน์ 4x และ -4x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-2y=2-16
เพิ่ม 2y ไปยัง -4y
-2y=-14
เพิ่ม 2 ไปยัง -16
y=7
หารทั้งสองข้างด้วย -2
x+7=4
ทดแทน 7 สำหรับ y ใน x+y=4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3
ลบ 7 จากทั้งสองข้างของสมการ
x=-3,y=7
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}