ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x-y=3,x-y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x-y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=y+3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{3}\left(y+3\right)
หารทั้งสองข้างด้วย 3
x=\frac{1}{3}y+1
คูณ \frac{1}{3} ด้วย y+3
\frac{1}{3}y+1-y=-1
ทดแทน \frac{y}{3}+1 สำหรับ x ในอีกสมการหนึ่ง x-y=-1
-\frac{2}{3}y+1=-1
เพิ่ม \frac{y}{3} ไปยัง -y
-\frac{2}{3}y=-2
ลบ 1 จากทั้งสองข้างของสมการ
y=3
หารทั้งสองข้างของสมการด้วย -\frac{2}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{1}{3}\times 3+1
ทดแทน 3 สำหรับ y ใน x=\frac{1}{3}y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=1+1
คูณ \frac{1}{3} ด้วย 3
x=2
เพิ่ม 1 ไปยัง 1
x=2,y=3
ระบบถูกแก้แล้วในขณะนี้
3x-y=3,x-y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{3}{2}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=3
แยกเมทริกซ์องค์ประกอบ x และ y
3x-y=3,x-y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x-x-y+y=3+1
ลบ x-y=-1 จาก 3x-y=3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x-x=3+1
เพิ่ม -y ไปยัง y ตัดพจน์ -y และ y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
2x=3+1
เพิ่ม 3x ไปยัง -x
2x=4
เพิ่ม 3 ไปยัง 1
x=2
หารทั้งสองข้างด้วย 2
2-y=-1
ทดแทน 2 สำหรับ x ใน x-y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
-y=-3
ลบ 2 จากทั้งสองข้างของสมการ
x=2,y=3
ระบบถูกแก้แล้วในขณะนี้