ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x+y=5,4x-y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-y+5
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-y+5\right)
หารทั้งสองข้างด้วย 3
x=-\frac{1}{3}y+\frac{5}{3}
คูณ \frac{1}{3} ด้วย -y+5
4\left(-\frac{1}{3}y+\frac{5}{3}\right)-y=2
ทดแทน \frac{-y+5}{3} สำหรับ x ในอีกสมการหนึ่ง 4x-y=2
-\frac{4}{3}y+\frac{20}{3}-y=2
คูณ 4 ด้วย \frac{-y+5}{3}
-\frac{7}{3}y+\frac{20}{3}=2
เพิ่ม -\frac{4y}{3} ไปยัง -y
-\frac{7}{3}y=-\frac{14}{3}
ลบ \frac{20}{3} จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างของสมการด้วย -\frac{7}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{3}\times 2+\frac{5}{3}
ทดแทน 2 สำหรับ y ใน x=-\frac{1}{3}y+\frac{5}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-2+5}{3}
คูณ -\frac{1}{3} ด้วย 2
x=1
เพิ่ม \frac{5}{3} ไปยัง -\frac{2}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้
3x+y=5,4x-y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&1\\4&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-4}&-\frac{1}{3\left(-1\right)-4}\\-\frac{4}{3\left(-1\right)-4}&\frac{3}{3\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5+\frac{1}{7}\times 2\\\frac{4}{7}\times 5-\frac{3}{7}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
3x+y=5,4x-y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\times 3x+4y=4\times 5,3\times 4x+3\left(-1\right)y=3\times 2
เพื่อทำให้ 3x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
12x+4y=20,12x-3y=6
ทำให้ง่ายขึ้น
12x-12x+4y+3y=20-6
ลบ 12x-3y=6 จาก 12x+4y=20 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y+3y=20-6
เพิ่ม 12x ไปยัง -12x ตัดพจน์ 12x และ -12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
7y=20-6
เพิ่ม 4y ไปยัง 3y
7y=14
เพิ่ม 20 ไปยัง -6
y=2
หารทั้งสองข้างด้วย 7
4x-2=2
ทดแทน 2 สำหรับ y ใน 4x-y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x=4
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย 4
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้