หาค่า x, y
x=-5
y=20
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
3x+y=5,2x+y=10
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+y=5
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-y+5
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-y+5\right)
หารทั้งสองข้างด้วย 3
x=-\frac{1}{3}y+\frac{5}{3}
คูณ \frac{1}{3} ด้วย -y+5
2\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=10
ทดแทน \frac{-y+5}{3} สำหรับ x ในอีกสมการหนึ่ง 2x+y=10
-\frac{2}{3}y+\frac{10}{3}+y=10
คูณ 2 ด้วย \frac{-y+5}{3}
\frac{1}{3}y+\frac{10}{3}=10
เพิ่ม -\frac{2y}{3} ไปยัง y
\frac{1}{3}y=\frac{20}{3}
ลบ \frac{10}{3} จากทั้งสองข้างของสมการ
y=20
คูณทั้งสองข้างด้วย 3
x=-\frac{1}{3}\times 20+\frac{5}{3}
ทดแทน 20 สำหรับ y ใน x=-\frac{1}{3}y+\frac{5}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-20+5}{3}
คูณ -\frac{1}{3} ด้วย 20
x=-5
เพิ่ม \frac{5}{3} ไปยัง -\frac{20}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=-5,y=20
ระบบถูกแก้แล้วในขณะนี้
3x+y=5,2x+y=10
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&1\\2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-10\\-2\times 5+3\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\20\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-5,y=20
แยกเมทริกซ์องค์ประกอบ x และ y
3x+y=5,2x+y=10
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3x-2x+y-y=5-10
ลบ 2x+y=10 จาก 3x+y=5 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3x-2x=5-10
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
x=5-10
เพิ่ม 3x ไปยัง -2x
x=-5
เพิ่ม 5 ไปยัง -10
2\left(-5\right)+y=10
ทดแทน -5 สำหรับ x ใน 2x+y=10 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
-10+y=10
คูณ 2 ด้วย -5
y=20
เพิ่ม 10 ไปยังทั้งสองข้างของสมการ
x=-5,y=20
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}