หาค่า x, y
x=6
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x-y=13,-4x-6y=-18
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-y=13
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=y+13
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(y+13\right)
หารทั้งสองข้างด้วย 2
x=\frac{1}{2}y+\frac{13}{2}
คูณ \frac{1}{2} ด้วย y+13
-4\left(\frac{1}{2}y+\frac{13}{2}\right)-6y=-18
ทดแทน \frac{13+y}{2} สำหรับ x ในอีกสมการหนึ่ง -4x-6y=-18
-2y-26-6y=-18
คูณ -4 ด้วย \frac{13+y}{2}
-8y-26=-18
เพิ่ม -2y ไปยัง -6y
-8y=8
เพิ่ม 26 ไปยังทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างด้วย -8
x=\frac{1}{2}\left(-1\right)+\frac{13}{2}
ทดแทน -1 สำหรับ y ใน x=\frac{1}{2}y+\frac{13}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-1+13}{2}
คูณ \frac{1}{2} ด้วย -1
x=6
เพิ่ม \frac{13}{2} ไปยัง -\frac{1}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=6,y=-1
ระบบถูกแก้แล้วในขณะนี้
2x-y=13,-4x-6y=-18
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-18\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-\left(-\left(-4\right)\right)}&-\frac{-1}{2\left(-6\right)-\left(-\left(-4\right)\right)}\\-\frac{-4}{2\left(-6\right)-\left(-\left(-4\right)\right)}&\frac{2}{2\left(-6\right)-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}13\\-18\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{16}\\-\frac{1}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}13\\-18\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 13-\frac{1}{16}\left(-18\right)\\-\frac{1}{4}\times 13-\frac{1}{8}\left(-18\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=6,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
2x-y=13,-4x-6y=-18
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-4\times 2x-4\left(-1\right)y=-4\times 13,2\left(-4\right)x+2\left(-6\right)y=2\left(-18\right)
เพื่อทำให้ 2x และ -4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
-8x+4y=-52,-8x-12y=-36
ทำให้ง่ายขึ้น
-8x+8x+4y+12y=-52+36
ลบ -8x-12y=-36 จาก -8x+4y=-52 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y+12y=-52+36
เพิ่ม -8x ไปยัง 8x ตัดพจน์ -8x และ 8x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
16y=-52+36
เพิ่ม 4y ไปยัง 12y
16y=-16
เพิ่ม -52 ไปยัง 36
y=-1
หารทั้งสองข้างด้วย 16
-4x-6\left(-1\right)=-18
ทดแทน -1 สำหรับ y ใน -4x-6y=-18 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-4x+6=-18
คูณ -6 ด้วย -1
-4x=-24
ลบ 6 จากทั้งสองข้างของสมการ
x=6
หารทั้งสองข้างด้วย -4
x=6,y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}