ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x-y=0,5x-2y=1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=y
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}y
หารทั้งสองข้างด้วย 2
5\times \frac{1}{2}y-2y=1
ทดแทน \frac{y}{2} สำหรับ x ในอีกสมการหนึ่ง 5x-2y=1
\frac{5}{2}y-2y=1
คูณ 5 ด้วย \frac{y}{2}
\frac{1}{2}y=1
เพิ่ม \frac{5y}{2} ไปยัง -2y
y=2
คูณทั้งสองข้างด้วย 2
x=\frac{1}{2}\times 2
ทดแทน 2 สำหรับ y ใน x=\frac{1}{2}y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=1
คูณ \frac{1}{2} ด้วย 2
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้
2x-y=0,5x-2y=1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-5\right)}&-\frac{-1}{2\left(-2\right)-\left(-5\right)}\\-\frac{5}{2\left(-2\right)-\left(-5\right)}&\frac{2}{2\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\-5&2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
คูณเมทริกซ์
x=1,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
2x-y=0,5x-2y=1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5\times 2x+5\left(-1\right)y=0,2\times 5x+2\left(-2\right)y=2
เพื่อทำให้ 2x และ 5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
10x-5y=0,10x-4y=2
ทำให้ง่ายขึ้น
10x-10x-5y+4y=-2
ลบ 10x-4y=2 จาก 10x-5y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-5y+4y=-2
เพิ่ม 10x ไปยัง -10x ตัดพจน์ 10x และ -10x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=-2
เพิ่ม -5y ไปยัง 4y
y=2
หารทั้งสองข้างด้วย -1
5x-2\times 2=1
ทดแทน 2 สำหรับ y ใน 5x-2y=1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
5x-4=1
คูณ -2 ด้วย 2
5x=5
เพิ่ม 4 ไปยังทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย 5
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้