หาค่า x, y
x = -\frac{31}{13} = -2\frac{5}{13} \approx -2.384615385
y = -\frac{64}{13} = -4\frac{12}{13} \approx -4.923076923
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x-3y=10
พิจารณาสมการแรก เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
2y+3x=-17
พิจารณาสมการที่สอง เพิ่ม 3x ไปทั้งสองด้าน
2x-3y=10,3x+2y=-17
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-3y=10
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=3y+10
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(3y+10\right)
หารทั้งสองข้างด้วย 2
x=\frac{3}{2}y+5
คูณ \frac{1}{2} ด้วย 3y+10
3\left(\frac{3}{2}y+5\right)+2y=-17
ทดแทน \frac{3y}{2}+5 สำหรับ x ในอีกสมการหนึ่ง 3x+2y=-17
\frac{9}{2}y+15+2y=-17
คูณ 3 ด้วย \frac{3y}{2}+5
\frac{13}{2}y+15=-17
เพิ่ม \frac{9y}{2} ไปยัง 2y
\frac{13}{2}y=-32
ลบ 15 จากทั้งสองข้างของสมการ
y=-\frac{64}{13}
หารทั้งสองข้างของสมการด้วย \frac{13}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{3}{2}\left(-\frac{64}{13}\right)+5
ทดแทน -\frac{64}{13} สำหรับ y ใน x=\frac{3}{2}y+5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{96}{13}+5
คูณ \frac{3}{2} ครั้ง -\frac{64}{13} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=-\frac{31}{13}
เพิ่ม 5 ไปยัง -\frac{96}{13}
x=-\frac{31}{13},y=-\frac{64}{13}
ระบบถูกแก้แล้วในขณะนี้
2x-3y=10
พิจารณาสมการแรก เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
2y+3x=-17
พิจารณาสมการที่สอง เพิ่ม 3x ไปทั้งสองด้าน
2x-3y=10,3x+2y=-17
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-17\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-3\\3&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 10+\frac{3}{13}\left(-17\right)\\-\frac{3}{13}\times 10+\frac{2}{13}\left(-17\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{31}{13}\\-\frac{64}{13}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{31}{13},y=-\frac{64}{13}
แยกเมทริกซ์องค์ประกอบ x และ y
2x-3y=10
พิจารณาสมการแรก เพิ่ม 10 ไปทั้งสองด้าน สิ่งใดบวกกับศูนย์จะได้ผลเป็นตัวเอง
2y+3x=-17
พิจารณาสมการที่สอง เพิ่ม 3x ไปทั้งสองด้าน
2x-3y=10,3x+2y=-17
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3\left(-3\right)y=3\times 10,2\times 3x+2\times 2y=2\left(-17\right)
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x-9y=30,6x+4y=-34
ทำให้ง่ายขึ้น
6x-6x-9y-4y=30+34
ลบ 6x+4y=-34 จาก 6x-9y=30 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-9y-4y=30+34
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-13y=30+34
เพิ่ม -9y ไปยัง -4y
-13y=64
เพิ่ม 30 ไปยัง 34
y=-\frac{64}{13}
หารทั้งสองข้างด้วย -13
3x+2\left(-\frac{64}{13}\right)=-17
ทดแทน -\frac{64}{13} สำหรับ y ใน 3x+2y=-17 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x-\frac{128}{13}=-17
คูณ 2 ด้วย -\frac{64}{13}
3x=-\frac{93}{13}
เพิ่ม \frac{128}{13} ไปยังทั้งสองข้างของสมการ
x=-\frac{31}{13}
หารทั้งสองข้างด้วย 3
x=-\frac{31}{13},y=-\frac{64}{13}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}