หาค่า x, y
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
y = \frac{17}{6} = 2\frac{5}{6} \approx 2.833333333
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x-3y=-1,2x+3y=16
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-3y=-1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=3y-1
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(3y-1\right)
หารทั้งสองข้างด้วย 2
x=\frac{3}{2}y-\frac{1}{2}
คูณ \frac{1}{2} ด้วย 3y-1
2\left(\frac{3}{2}y-\frac{1}{2}\right)+3y=16
ทดแทน \frac{3y-1}{2} สำหรับ x ในอีกสมการหนึ่ง 2x+3y=16
3y-1+3y=16
คูณ 2 ด้วย \frac{3y-1}{2}
6y-1=16
เพิ่ม 3y ไปยัง 3y
6y=17
เพิ่ม 1 ไปยังทั้งสองข้างของสมการ
y=\frac{17}{6}
หารทั้งสองข้างด้วย 6
x=\frac{3}{2}\times \frac{17}{6}-\frac{1}{2}
ทดแทน \frac{17}{6} สำหรับ y ใน x=\frac{3}{2}y-\frac{1}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{17}{4}-\frac{1}{2}
คูณ \frac{3}{2} ครั้ง \frac{17}{6} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{15}{4}
เพิ่ม -\frac{1}{2} ไปยัง \frac{17}{4} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{15}{4},y=\frac{17}{6}
ระบบถูกแก้แล้วในขณะนี้
2x-3y=-1,2x+3y=16
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\16\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-3\\2&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 2\right)}&-\frac{-3}{2\times 3-\left(-3\times 2\right)}\\-\frac{2}{2\times 3-\left(-3\times 2\right)}&\frac{2}{2\times 3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 16\\-\frac{1}{6}\left(-1\right)+\frac{1}{6}\times 16\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{4}\\\frac{17}{6}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{15}{4},y=\frac{17}{6}
แยกเมทริกซ์องค์ประกอบ x และ y
2x-3y=-1,2x+3y=16
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x-2x-3y-3y=-1-16
ลบ 2x+3y=16 จาก 2x-3y=-1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y-3y=-1-16
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-6y=-1-16
เพิ่ม -3y ไปยัง -3y
-6y=-17
เพิ่ม -1 ไปยัง -16
y=\frac{17}{6}
หารทั้งสองข้างด้วย -6
2x+3\times \frac{17}{6}=16
ทดแทน \frac{17}{6} สำหรับ y ใน 2x+3y=16 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x+\frac{17}{2}=16
คูณ 3 ด้วย \frac{17}{6}
2x=\frac{15}{2}
ลบ \frac{17}{2} จากทั้งสองข้างของสมการ
x=\frac{15}{4}
หารทั้งสองข้างด้วย 2
x=\frac{15}{4},y=\frac{17}{6}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}