หาค่า x, y
x=6
y=5
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+y=17,5x-5y=5
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+y=17
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-y+17
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-y+17\right)
หารทั้งสองข้างด้วย 2
x=-\frac{1}{2}y+\frac{17}{2}
คูณ \frac{1}{2} ด้วย -y+17
5\left(-\frac{1}{2}y+\frac{17}{2}\right)-5y=5
ทดแทน \frac{-y+17}{2} สำหรับ x ในอีกสมการหนึ่ง 5x-5y=5
-\frac{5}{2}y+\frac{85}{2}-5y=5
คูณ 5 ด้วย \frac{-y+17}{2}
-\frac{15}{2}y+\frac{85}{2}=5
เพิ่ม -\frac{5y}{2} ไปยัง -5y
-\frac{15}{2}y=-\frac{75}{2}
ลบ \frac{85}{2} จากทั้งสองข้างของสมการ
y=5
หารทั้งสองข้างของสมการด้วย -\frac{15}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{2}\times 5+\frac{17}{2}
ทดแทน 5 สำหรับ y ใน x=-\frac{1}{2}y+\frac{17}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{-5+17}{2}
คูณ -\frac{1}{2} ด้วย 5
x=6
เพิ่ม \frac{17}{2} ไปยัง -\frac{5}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=6,y=5
ระบบถูกแก้แล้วในขณะนี้
2x+y=17,5x-5y=5
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&1\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\5\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}2&1\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&1\\5&-5\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&-5\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-5}&-\frac{1}{2\left(-5\right)-5}\\-\frac{5}{2\left(-5\right)-5}&\frac{2}{2\left(-5\right)-5}\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{15}\\\frac{1}{3}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 17+\frac{1}{15}\times 5\\\frac{1}{3}\times 17-\frac{2}{15}\times 5\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=6,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
2x+y=17,5x-5y=5
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5\times 2x+5y=5\times 17,2\times 5x+2\left(-5\right)y=2\times 5
เพื่อทำให้ 2x และ 5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
10x+5y=85,10x-10y=10
ทำให้ง่ายขึ้น
10x-10x+5y+10y=85-10
ลบ 10x-10y=10 จาก 10x+5y=85 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
5y+10y=85-10
เพิ่ม 10x ไปยัง -10x ตัดพจน์ 10x และ -10x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
15y=85-10
เพิ่ม 5y ไปยัง 10y
15y=75
เพิ่ม 85 ไปยัง -10
y=5
หารทั้งสองข้างด้วย 15
5x-5\times 5=5
ทดแทน 5 สำหรับ y ใน 5x-5y=5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
5x-25=5
คูณ -5 ด้วย 5
5x=30
เพิ่ม 25 ไปยังทั้งสองข้างของสมการ
x=6
หารทั้งสองข้างด้วย 5
x=6,y=5
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}