ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x-y=0
พิจารณาสมการที่สอง ลบ y จากทั้งสองด้าน
2x+y=10,3x-y=0
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+y=10
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-y+10
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-y+10\right)
หารทั้งสองข้างด้วย 2
x=-\frac{1}{2}y+5
คูณ \frac{1}{2} ด้วย -y+10
3\left(-\frac{1}{2}y+5\right)-y=0
ทดแทน -\frac{y}{2}+5 สำหรับ x ในอีกสมการหนึ่ง 3x-y=0
-\frac{3}{2}y+15-y=0
คูณ 3 ด้วย -\frac{y}{2}+5
-\frac{5}{2}y+15=0
เพิ่ม -\frac{3y}{2} ไปยัง -y
-\frac{5}{2}y=-15
ลบ 15 จากทั้งสองข้างของสมการ
y=6
หารทั้งสองข้างของสมการด้วย -\frac{5}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{1}{2}\times 6+5
ทดแทน 6 สำหรับ y ใน x=-\frac{1}{2}y+5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3+5
คูณ -\frac{1}{2} ด้วย 6
x=2
เพิ่ม 5 ไปยัง -3
x=2,y=6
ขณะนี้ได้แก้ไขระบบเรียบร้อยแล้ว
3x-y=0
พิจารณาสมการที่สอง ลบ y จากทั้งสองด้าน
2x+y=10,3x-y=0
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&1\\3&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{1}{2\left(-1\right)-3}\\-\frac{3}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
สำหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถถูกเขียนขึ้นเป็นปัญหาการคูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10\\\frac{3}{5}\times 10\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=6
แยกเมทริกซ์องค์ประกอบ x และ y
3x-y=0
พิจารณาสมการที่สอง ลบ y จากทั้งสองด้าน
2x+y=10,3x-y=0
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3\times 2x+3y=3\times 10,2\times 3x+2\left(-1\right)y=0
เพื่อทำให้ 2x และ 3x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 3 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
6x+3y=30,6x-2y=0
ทำให้ง่ายขึ้น
6x-6x+3y+2y=30
ลบ 6x-2y=0 จาก 6x+3y=30 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
3y+2y=30
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=30
เพิ่ม 3y ไปยัง 2y
y=6
หารทั้งสองข้างด้วย 5
3x-6=0
ทดแทน 6 สำหรับ y ใน 3x-y=0 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
3x=6
เพิ่ม 6 ไปยังทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 3
x=2,y=6
ขณะนี้ได้แก้ไขระบบเรียบร้อยแล้ว