หาค่า x, y
x=1
y=2
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
2x+3y=8,3x+3y=9
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=8
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y+8
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y+8\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y+4
คูณ \frac{1}{2} ด้วย -3y+8
3\left(-\frac{3}{2}y+4\right)+3y=9
ทดแทน -\frac{3y}{2}+4 สำหรับ x ในอีกสมการหนึ่ง 3x+3y=9
-\frac{9}{2}y+12+3y=9
คูณ 3 ด้วย -\frac{3y}{2}+4
-\frac{3}{2}y+12=9
เพิ่ม -\frac{9y}{2} ไปยัง 3y
-\frac{3}{2}y=-3
ลบ 12 จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างของสมการด้วย -\frac{3}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{3}{2}\times 2+4
ทดแทน 2 สำหรับ y ใน x=-\frac{3}{2}y+4 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-3+4
คูณ -\frac{3}{2} ด้วย 2
x=1
เพิ่ม 4 ไปยัง -3
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้
2x+3y=8,3x+3y=9
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}2&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\3&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 3}&-\frac{3}{2\times 3-3\times 3}\\-\frac{3}{2\times 3-3\times 3}&\frac{2}{2\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8+9\\8-\frac{2}{3}\times 9\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=2
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=8,3x+3y=9
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x-3x+3y-3y=8-9
ลบ 3x+3y=9 จาก 2x+3y=8 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2x-3x=8-9
เพิ่ม 3y ไปยัง -3y ตัดพจน์ 3y และ -3y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-x=8-9
เพิ่ม 2x ไปยัง -3x
-x=-1
เพิ่ม 8 ไปยัง -9
x=1
หารทั้งสองข้างด้วย -1
3+3y=9
ทดแทน 1 สำหรับ x ใน 3x+3y=9 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
3y=6
ลบ 3 จากทั้งสองข้างของสมการ
y=2
หารทั้งสองข้างด้วย 3
x=1,y=2
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}